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What do we need?

• Accurate species identification

• Feature identification (e.g. resistance prediction; toxin and virulence 
prediction)

• High resolution typing to identify and characterise outbreaks e.g. time 
scaled phylogenies/genealogies (family trees)

• Fast, cheap, accurate outputs and on all specimens/isolates

• Linkage to pathogen phenotype and patient epidemiological/clinical 
record data as an enduring encyclopaedic store of information



Concept for ideal whole genome sequencing solution

In one step generate the 
complete diagnostic, typing 
and surveillance information

Nature Reviews Genetics 13, 601-612 (September 2012)



What are the challenges

• To go from research proof-of-principle to a fully accredited service
• Systematic well validated method for extracting and purifying nucleic acids

• Sequencing platform which is stable and produces reproducible results

• Software for processing the data yielding:
• Species identification

• Feature prediction - curated knowledge bases
• Resistance prediction 

• Pathotype

• Transmission cluster identification

• Linkage to epidemiological and clinical record data – data protection compliant

• Software for reporting and presentation/visualisation of data

• Persistent storage and sharing to benefit from a complete landscape within a species

• Clinical validation

• Accreditation



Seven pillars of wisdom needed if each pathogen
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Will give 3 exemplars

• Clostridium difficile

• Enterobacterial carbapenemase resistance

• Mycobacterium tuberculosis TB



Clostridium difficile



Role of symptomatic patients in C. difficile 
transmission

• We sequenced 1223 of  
all 1251 hospital and 
community CDI cases 
(98%) in Oxfordshire, 
September 2007 –
March 2011

• Hospital admission and 
ward movement data, 
and home postcode 
district and GP location 
available for each case

• 3 Hospitals
• Typical CDI incidence
• Infection control in line with 

published guidelines

Oxford

Banbury

23 miles

Eyre: N Engl J Med 2013; 369:1195-1205



Applying sequencing

Reproducible sequencing

• 180 genomes sequenced more than once, 1 false SNV per 90 genomes

Within host diversity and evolution

• 0-2 SNVs expected between
transmitted isolates up to
123 days apart

• > 10 SNVs likely to be 
unrelated with a time to most 
recent common  ancestor of ~ 
5 years



Source of new C. difficile cases

All cases 

No genetic matches 
624 (65%)  > 10 SNVs

Genetic matches
333 (35%)

Genetic Matches  (0-2 SNV)

No known contact

Community

Other same Hospital

Medical  
specialty

Direct Ward contact

Indirect ward (‘spore’)

957
333

120 (12%)

32 ( 3%)

12 ( 1%)

26 ( 3%)

126 (13%)

17 ( 2%)

N Engl J Med 2013; 369:1195-1205



Selection, dispersal and control of C. difficile



Change in incidence and quinolone usage nationally
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Oxfordshire C. difficile cases
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Oxfordshire C. difficile cases

0

5

10

15

20

25

30

Q
u
in

o
lo

n
e
: 
k
g

0

100

200

300

400

500

600

C
.d

if
f 

c
a
s
e
s

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0
1
1

2
0

1
2

2
0

1
3

Year

C.diff Quinolone resistant Quinolone use



Oxfordshire C. difficile cases
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Oxfordshire C. difficile cases
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Declining CDI in Oxford
Fluoroquinolone resistant

ˆ

Dingle; Lancet Infect Dis 2017; 17: 411–21
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Changes in quinolone resistance over time
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Phylogenetic patterns of quinolone resistant vs susceptible

Dingle; Lancet Infect Dis 2017; 17: 411–21



The decline of C. difficile in England

• It has declined by close to 70% since 2006

• Quinolone use declined by ~ 50% preceding  the 
decline in CDI

• The decline is attributable to the simultaneous 
disappearance of 4 quinolone resistant lineages. The 
remaining 69 lineages are largely unchanged in 
incidence

• Resistant lineages had undergone rapid clonal 
expansion and were geographically structured

• A quinolone effect is a likely explanation for the 
decline in CDI



Carbapenemase resistance in Enterobacteriacea



A single hospital

Antimicrob. Agents Chemother; April 2016



blaKPC in Virginia

• Virginia “outbreak” – ongoing since August 2007

• 281 blaKPC-positive Enterobacteriaceae
• Isolated August 2007 – December 2012
• From 182 patients
• All Illumina sequenced

• Multiple species of blaKPC-positive Enterobacteriaceae
• 9 different genera
• 13 different species
• 62 different “strains” 

(defined conservatively as ~500 SNPs variation in “core”)



Idealised outbreak timeline – what we’d like to see

1 Jan 2008 1 Jan 2009 1 Jan 2010 1 Jan 2011 1 Jan 2012 1 Jan 2013

Ward contact with prior 

case of same strain

St
ra

in
s

Patient isolate from the 
same strain (           ) with 

ward contact to prior 
case

Patient isolate from the same 
strain (           ) withOUT ward 

contact to prior case



What did we see - enormous host strain diversity

1 Jan 2008 1 Jan 2009 1 Jan 2010 1 Jan 2011 1 Jan 2012 1 Jan 2013

62 strains (13 species)

Ward contact with prior 

case of same strain

St
ra

in
s



Enormous host strain diversity

1 Jan 2008 1 Jan 2009 1 Jan 2010 1 Jan 2011 1 Jan 2012 1 Jan 2013

62 strains (13 species)!

→ Frequent blaKPC HGT
→ Plausibly due to promiscuous plasmid(s)

Ward contact with prior 

case of same strain

St
ra

in
s



Plasmid-mediated outbreak?

• Hypothesis: outbreak is driven by one or a few promiscuous plasmids 
carrying blaKPC

• Assumption: plasmid structures relatively stable within outbreak

• Approach:
• Generate outbreak-specific plasmid references (index patient)
• Use these to assess plasmid presence across outbreak isolates
• Definition: ≥99% sequence identity over ≥80% reference length

• Assessed via BLASTn (reference plasmid vs isolate’s de novo assembly)
• Stringent identity threshold: expect few SNP changes
• Lenient length threshold: single events can affect large regions

• Note: does not assess structural continuity (since this is impossible in many isolates due to 
repeat structures)



Spread of index plasmids
• Two blaKPC conjugative plasmids from index patient

• pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)



Spread of index plasmids
• Two blaKPC conjugative plasmids from index patient

• pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species Isolates

Citrobacter amalonaticus 2

Citrobacter freundii 30

Enterobacter aerogenes 4

Enterobacter asburiae 1

Enterobacter cloacae 96

Escherichia coli 2

Klebsiella oxytoca 35

Klebsiella pneumoniae 94

Kluyvera intermedia 7

Proteus mirabilis 1

Raoultella ornothinolytica 1

Serratia marcescens 5

Other (unknown) 3

Total 281



Spread of index plasmids
• Two blaKPC conjugative plasmids from index patient

• pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species Isolates pKPC_UVA01

Citrobacter amalonaticus 2 1

Citrobacter freundii 30 29

Enterobacter aerogenes 4 2

Enterobacter asburiae 1 0

Enterobacter cloacae 96 84

Escherichia coli 2 1

Klebsiella oxytoca 35 9

Klebsiella pneumoniae 94 31

Kluyvera intermedia 7 7

Proteus mirabilis 1 1

Raoultella ornothinolytica 1 1

Serratia marcescens 5 0

Other (unknown) 3 0

Total 281 166 (59%)



Spread of index plasmids
• Two blaKPC conjugative plasmids from index patient

• pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species Isolates pKPC_UVA01 pKPC_UVA02

Citrobacter amalonaticus 2 1 0

Citrobacter freundii 30 29 7

Enterobacter aerogenes 4 2 0

Enterobacter asburiae 1 0 0

Enterobacter cloacae 96 84 2

Escherichia coli 2 1 0

Klebsiella oxytoca 35 9 25

Klebsiella pneumoniae 94 31 18

Kluyvera intermedia 7 7 0

Proteus mirabilis 1 1 0

Raoultella ornothinolytica 1 1 0

Serratia marcescens 5 0 0

Other (unknown) 3 0 0

Total 281 166 (59%) 52 (19%)



Spread of index plasmids
• Two blaKPC conjugative plasmids from index patient

• pKPC_UVA01 (43,621 bp) and pKPC_UVA02 (113,105 bp)

Species Isolates pKPC_UVA01 pKPC_UVA02 Neither

Citrobacter amalonaticus 2 1 0 1

Citrobacter freundii 30 29 7 1 (3%) 

Enterobacter aerogenes 4 2 0 2

Enterobacter asburiae 1 0 0 1

Enterobacter cloacae 96 84 2 10 (10%)

Escherichia coli 2 1 0 1

Klebsiella oxytoca 35 9 25 1 (3%)

Klebsiella pneumoniae 94 31 18 45 (48%)

Kluyvera intermedia 7 7 0 0

Proteus mirabilis 1 1 0 0

Raoultella ornothinolytica 1 1 0 0

Serratia marcescens 5 0 0 5

Other (unknown) 3 0 0 3

Total 281 166 (59%) 52 (19%) 70 (25%)

→ Consistent with  local plasmid-mediated outbreak, 
plus occasional imports from other healthcare institutions

mostly known 
endemic clone 

previously 
described with 
other plasmids



Long-read sequencing

• Needed to validate conclusions, given structural uncertainties of 
short-read WGS

• PacBio sequencing 
• 17 randomly chosen isolates

• Fully closed plasmid structures



11 different blaKPC (*) plasmids among 80!

*
*

14kb 
to 

330kb
* *

*

*

*

*

*
*

*



Structural diversity of pKPC_UVA01

No blaKPC!

blaKPC

Initial results simply WRONG:
• Many different plasmids 

involved
• Plasmid structures NOT 

conservedIndex plasmid

* *



A highly dynamic dispersal of KPC within the 
clinical ecosystem
• KPC dispersing at 3 scales:

• Isolates spreading KPC between patients

• Frequent transfer of blaKPC plasmids between strains/species

• Frequent transfer of blaKPC transposon Tn4401 between  plasmids

• Where’s the reservoir?



UVa sink study

CPE E. coli were found in > 10 CFU/CM3 in the basins

Applied and Environmental Microbiology April 2017 Volume 83 Issue 8 e03327-16



University of Virginia Hospital intervention

Clinical of Infectious Diseases, epublished Feb 2018



Mycobacteria

• Use this as the example of how to implement a WGS solution into 
clinical and public health practice

• Give a sense of what the future holds?



The TB problem

• It is a leading infectious disease world-wide
• In 2014, 1.5 m died; 9.6 m developed TB; 0.5m MDR-TB, and 1/3 undiagnosed

• Case detection is relatively poor
• Full microbiological diagnosis is complex, error prone and slow

• Spread is mostly person-to-person with a small zoonotic reservoir

• Can be effectively treated
• Most treatment is initially empiric; prolonged, and can produce drug resistance

• Can be prevented and even eliminated?
• Better diagnosis seen as an imperative e.g Cepheid GeneXpert tb/rif



What we can deliver with WGS?
• Developed a MGIT dependent workflow and a software yielding the following:

• Increasingly fast, cheap and accurate outputs that can be stored and shared Lancet Respir Med. 2016 

Jan;4(1):49-58;  J Clin Microbiol. 2018 Jan 24;56(2).

• Accurate species identification Lancet Respir Med. 2016 Jan;4(1):49-58;  J Clin Microbiol. 2018 Jan 24;56(2).

• Resistance prediction Lancet Infect Dis 2015;15: 1193–1202; Lancet Respir Med. 2016 Jan;4(1):49-58;  J Clin Microbiol. 2018 Jan 24;56(2).

• Outbreak detection Lancet Infect Dis 2015;15: 1193–1202; Wyllie. under review

• Linkage to pathogen phenotype and patient epidemiological/clinical record data yielding 
information for treating patients and directing outbreak investigation In pilot deployment.



Full national implementation in England

• Sequencing approximately 30,000 samples/year

• DST will be stopped when predicting susceptibility to the 4 first line drugs
• Based on:

Analysis of 10,000 isolates from 
across the world

Diagnostically there is < 2% chance 
the isolate will be falsely resistant



Where are the gaps?

• We need:

• a comprehensive knowledge base of genomic variants conferring resistance

• a faster sequencer

• faster software

• to process direct from a sample and be equivalent/better than genexpert



Anti-tuberculosis drug resistance prediction

• Arguably 15 drugs are available for treating TB with more new drugs 
in development

• Is genomic variation which confers resistance limited to somewhere 
between 20 to 30 genes?

• Current knowledge indicates molecular prediction of INH, rifampicin 
resistant or pan-susceptible isolates is ~ 95% accurate

• The knowledge base of variation conferring resistance to ‘all drugs’ is 
incomplete



Filling the resistance gap
Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC)

• 100,000 WGS TB pledged
• ~ 40,000 with extensive DST
• Analysis:

– Heuristic approach
– GWAS
– Machine Learning
– Thermodynamic modelling of proteins
– Molecular genetic characterisation

Pyrazinamide  will be done by  MGIT liquid culture

People powered research
zooniverse.org

Twitter: @bashthebug

Phenotyping Genotypic characterisation



A faster sequencer



How long does it take?

J Clin Microbiol. 2017 May;55(5):1285-1298



Direct from a sample



Can we do it direct from sputum?

J Clin Microbiol. 2017 May;55(5):1285-1298

All samples >1+ positive for AFB



A faster software





What limits of detection are we aiming for?

0 – 4+

4+

3+

2+

1+

scanty

AFB/ml

10,000,000

1,000,000

100,000

10,000

3,000

HPF/AFB

10

1

0.1

0.01

0.003

Genexpert

+

+

+

+

+

WGS

complete

complete

complete

In-complete

In-complete



Establish a WGS software application on the cloud

• Accessible to users anywhere, anytime and will need:
• reasonable internet bandwidth

• Simple extraction 

• light-weight sequencing infrastructure

• Partners are setting up field sites in:
• Mumbai

• Ho Chi Minh City

• Madagascar



A draft schema

Standardised 
sample 
preparationLIMS Sequence

Local

Centralised 
Cloud
EBI 

Transfer
Summary 
Results Data

Assembly
Variant calls
Resistance calling
Cluster analysis

Persistent storage

Link to 
identifiable data 
and visually 
present results

LocalAccredited software service



The schema for diagnostics and prevention

Comprehensive 
diagnostics based on 

whole genome  
sequencing

Linked genomics 
and epidemiological 

data
Epi data

Sequenced 
samples

Case finding 
and cluster 

investigation
Directed

Tailored therapy

Sample to treatment 
in less than a day

Other 
diagnostic
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