Advances in Neuroimaging for Cognitive Impairment and Dementia

DR CHRISTOPHER CHEN DIRECTOR, MEMORY AGING & COGNITION CENTRE DEPARTMENT OF PHARMACOLOGY NATIONAL UNIVERSITY OF SINGAPORE

SENIOR CLINICIAN SCIENTIST NATIONAL MEDICAL RESEARCH COUNCIL

NMRC National Medical Research Council

Largest increases in dementia burden will be in Asia

ESTIMATED GROWTH OF DEMENTIA

The number of people with dementia will roughly double every 20 years, with the biggest increases in developing countries.

ADI, 2010

Memory Aging & Cognition Centre (MACC)

4 Themes focusing on "Asian" (actually global) phenotype of dementia & cognitive impairment due to neurodegeneration and cerebrovascular disease

Collaboration of NUHS, NUS, A*STAR and

other institutions in Singapore St Luke's, SERI, Duke-NUS, NNI and internationally

King's London, Oxford, UCLA, Utrecht, Rotterdam

Memory Aging & Cognition Centre

Memory Aging & Cognition Centre

Biomarker Discovery & Mechanisms of Disease

Mitchell Lai, Peter Wong, Sze Siu Kwan

Neuroimaging Theme

MRI : Helen Zhou, H Vroomans Retinal : Wong Tien Yin, Carol Cheung

Clinical Theme

Christopher Chen, NV Ramani

Epidemiology Theme

NV Ramani, CY Cheng, TY Wong

Funded by the NMRC 2010-13 (Centre Grant) and renewed for 2013-17 (NUHS Centre Grant) and 2017-2022 (NUHS Centre Grant)

Yong Loo Lin School of Medicine A member of the NUHS

Harmonisation Baseline = 580 Yr1 = 515 Yr2 = 417 Yr3 = 331 Yr4 = 206 Yr5 = 145 Other	LONGITUD a) post acut (COAST, COAS up t b) controls, f (HARMONISA for up	DINAL COHORTS te stroke patients T-E) followed up for to 6 years MCI and dementia ATION) followed up to 5 years	EPIDEMIOLO multi-ethnic based stu prevalence o dementia risk factors,	GY COHORT community dy of the of dementia, subtypes biomarkers	N= 959 Chinese=300 Malay= 323 Indian=336 CLINICAL TRIALS MissionAD=2 NEURITES = 62
Observational Studies MoH AD8	COAST = 400 COAST E = 318	As of 31 st	Mar 2018		Athene = 101 Starbright = 19 Mindset= 13
Phase 1=1072 Phase2 =309 ADOS Study = 40	M Clinical 8	IACC Clinical R	esearch Core plogical Asse	e: ssments	Mindset Ext= 11 TauRx = 7 OLEX= 5
Asian Nutritional Status Study= 180	7NUS- ASP		NMRC-	-IRG	AB Science =1
BIOMARK neurocher epigenetic and markers for d subtype	ERS : mical d genetic ementia es	 Collaboration v Identifying MR associated with subtypes & cerel contribution to 	dementia dementia dementia	RETINAL IMAGI Identifying reti markers associa with dement subtypes	NG : nal ated ia
NMRC CSA	9 57 baseline, 395y	918 community based su vear 2, 236 year 4/5 lou	ubjects with MRI	jects with MRI	GSK ACE Award Cross-sectional (429
NUS National University of Singapore	1 Mer	70 subjects with amyloid	i pet : Abri= 157, pie	s= 24 ntre	NUHS National University Health System

Neuroimaging Methodologies for Cognitive Impairment and Dementia

Structural Imaging

CT **MRI** MRA DTI **Functional Imaging** PET SPECT **f**MRI **Molecular Imaging** PET

Imaging Methodologies for Dementia

Structural imaging may be helpful in identifying particular causes of dementia

Alzheimer's Disease cortical and hippocampal atrophy Fronto-temporal Dementia asymmetrical frontal / temporal atrophy Vascular Dementia infarcts and vessel occlusion

Mild AD

Moderate AD

Hippocampal Atrophy —

Severe AD

LARGE-VESSEL INFARCT DEMENTIA

Hippocampal infarct <

Right cortical infarct

Vertebral artery occlusion

Cerebrovascular Contributions to Cognitive Impairment and Dementia

Vascular pathology is highly prevalent in elderly people Vascular contributions to cognitive impairment and dementia in later life are important

Evidence that vascular risk factors (hypertension, diabetes, and hypercholesterolaemia) increase the risk of Alzheimer's Disease suggests a role of vascular factors in potentiating or even triggering neurodegenerative disease
Many people with dementia have mixed pathology (commonly AD and cerebral small vessel disease)
Vascular pathology can be additive with AD pathology in impairing cognitive function and increasing the likelihood

of dementia

CoEN, Lancet Neurology 2012

The Importance of Covert Stroke

Overt stroke is what most often demands attention and consumes resources

However, advances in neuroimaging have shown that more needs to be learned about covert vascular disease that erodes brain structure and function in less dramatic ways

These MRI findings are common in the elderly and not benign

Need to identify etiologic risk factors so that they be prevented with preservation of brain function

Imaging Biomarkers of Vascular Cognitive Disorders

and less usual

Cortical Infarcts Lacunar Infarcts White Matter Lesions Atrophy DTI **Cerebral Microbleeds** Intracranial Stenosis **Retinal Imaging** Amyloid Imaging

Microinfarcts : Important but previously invisible during life

systematic review autopsy studies

- cystic or gliotic
- 100-200 µm to a few mm

prevalence:

- Alzheimer's 43%
- vascular dementia 62%
- non-demented elderly 24%

ADDITIVE EFFECT OF MICROINFARCTS AND AD PATHOLOGY

Religious Orders Study

Probability dementia: AD + vascular pathology

Arvanitakis et al Stroke 2011

Review

Cerebral microinfarcts: the invisible lesions

Eric E Smith, Julie A Schneider, Joanna M Wardlaw, Steven M Greenberg

Lancet Neurol 2012; 11: 272-82 The association between small but still visible lacunar infarcts and cognitive decline has t

Until the advent of high field strength 7T MRI

Cortical Microinfarcts are Visible on 7T MRI

van Veluw JCBFM 2013

Cortical Microinfarcts also Visible on 3T MRI

Three cortical microinfarcts detected in 70 year old male with vascular cognitive impairment Depicted are a 3D T1 (A), FLAIR (B), and T2 (C) image

27% of 7T detected CMIs also seen on 3T87% of 3T detected CMIs also seen on 7T

The Importance of Funding Academic Meetings

2nd Translational Strategies for Therapeutics Discovery in Dementia Date : 1 February 2013 Venue : NUS Centre of Life Sciences Auditorium Level 1

Time	Speakers	Presentation Topics			
0800 - 0830 hrs	Registration				
Chairperson : A/Prof Christopher Chen					
0830 - 0835 hrs	A/Prof Christopher Chen Introduction				
0835 - 0930 hrs	Prof Duk L.Na Plenary Lecture 1 - Prediction of PiB Negative S Vascular Dementia Using Clinical And MRI Var				
0930 - 1000 hrs	Dr Helen Zhou	Predicting regional neurodegeneration from healthy functional connectome			
1000 - 1030	Dr Kamran Ikram	Association of Retinal Imaging with Neuroimaging and Cognition			
1030 - 1100 hrs	Coffee break				
Chairperson : Prof Carlos Ibanez					
1100 - 1130 hrs	Dr Andrea Lim	Animal and Cell Culture Models of Alzheimer's Disease			
1130 - 1200hrs	Dr Mitchell Lai	Genome wide microarray approaches toward biomarkers discovery in dementia			
1200 - 1300 hrs	Lunch break				
	Chairperson :	Prof Barry Halliwell			
1300 - 1400 hrs	Prof Paul Francis	Plenary Lecture 2 - Neurochemical studies of dementia: clues for new biomarkers			
1400 - 1430 hrs	A/Prof Newman Sze	Degenerative protein post-translational modifications in human disease and ageing			
1430 - 1500 hrs	Coffee break				
Chairperson : Prof David Townsend					
1500 - 1600 hrs	Prof. Geert Jan Biessels	Plenary Lecture 3 - Imaging cortical microinfarcts and cerebrovascular lesions			
1600 - 1630 hrs	Dr Qiu Anqi	Cortical Atrophy and White Matter Lesions in Vascular Cognitive Impairment : Preliminary Results from the Memory Aging & Cognition Centre Harmonisation Study			
1630 - 1700 hrs	Dr Chuang Kai Hsiang Development of Arterial Spin Labeling Perfusion MRI for Translation Study of Dementia				
	End of Conference				

Clinical Significance of Cortical Microinfarcts

238 consecutive patients (72.5±9.1 years, 49% men) from a memory clinic in Singapore between December 2010 and September 2013.

- All patients underwent extensive neurological and neuropsychological testing and 3T MRI on the same day
- Cortical CMI rating criteria were adapted from a previous study at 7T MRI.

Van Veluw et al (2015)

Cortical Cerebral Microinfarcts

Three cortical CMIs on the 3T MR images of a 63-year old Singaporean male with 'vascular cognitive impairment no dementia'. Depicted are a 3D T1 (A), FLAIR (B), and T2 (C) image. This patient had 32 cortical CMIs, of which 3 are captured in these images (arrows).

Van Veluw et al (2015)

Cortical Microinfarcts : Cognition

Characteristics	without CMIs	with CMIs	s B [95%	CI] P-valu	ie
	(N=163)	(N=75)	Prevalence	of 32%	
Cognitive profile			in Memory	Clinic patien	ts
Mini-mental state examination	21.0 ± 6.2	19.5 ± 5.9	9 -1.49 [-2.89	; -0.08] 0.03 8	3
Montreal Cognitive Assessment	16.5 ± 7.2	15.2 ± 6.9	9 -1.38 [-2.96	6; 0.20] 0.086	5
Composite z-score	0.08 ± 1.05	$\textbf{-0.17}\pm0.1$	0 -0.20 [-0.42	2; 0.01] 0.067	7
Executive function	0.06 ± 1.00	-0.13 ± 1.0	-0.18 [-0.41	; 0.05] 0.133	3
Attention	0.03 ± 1.00	-0.07 ± 1.0	2 -0.11 [-0.34	k; 0.13] 0.375	5
Language	0.09 ± 1.04	-0.21 ± 0.8	9 -0.28 [-0.53	; -0.04] 0.02 3	3
Verbal memory	0.05 ± 1.05	-0.11 ± 0.8	-0.13 [-0.37	7; 0.10] 0.268	3
Visual memory	0.07 ± 1.06	-0.15 ± 0.8	-0.21 [-0.45	5; 0.03] 0.086	6
Visuoconstruction	0.10 ± 1.03	-0.21 ± 0.8	9 -0.30 [-0.52	; -0.08] 0.008	3
Visuomotor speed	0.07 ± 1.06	-0.15 ± 0.8	-0.19 [-0.40); 0.01] 0.067	7
Characteristics	Without CMIs	With CMIs	OR [95%CI]	P-value	
	(N=163)	(N=75)			
Referral diagnosis				leeds and patients with	a a a
No cognitive impairment	26 (16)	4 (5)	0.27 [0.09 ; 0.85]	0.025	10
CIND, without stroke	29 (18)	5 (7) (0.34 [0.12 ; 0.92]	0.033	
CIND with stroke	32 (20)	23 (31)	.80 [0.94 ; 3.47]	0.078	
Alzheimer's disease	66 (40)	31 (41)	.13 [0.60 ; 2.12]	0.708	
Vascular dementia	10 (6)	12 (16) 2	2.86 [1.17 ; 6.99]	0.021	

van Veluw, Hilal S et al. 2015, Alz and Dem

Cortical Microinfarcts : Risk Factors

Prevalence of 6.3% in population based study

	CMI (presence vs. absence)	CMI (counts)	
Risk factors			
	OR (95%CI)*	RR (95%CI)†	
Demographics			
Age, (per year increase)	1.09 (1.05-1.14)	1.09 (1.06-1.12)	
Gender (men vs. women)	1.47 (0.83-2.62)	1.77 (1.22-2.56)	
Ethnicity,			
Malay vs. Chinese	2.38 (1.17-4.84)	2.29 (1.42-3.69)	
Malay vs. Indian	1.84 (0.87-3.89)	1.79 (1.14-2.81)	
Chinese vs. Indian	0.83 (0.35-1.99)	0.78 (0.44-1.38)	
Cardiovascular risk factors			
Hypertension, (yes vs. no)	3.36 (1.02-11.09)	4.33 (1.58-11.83)	
Hyperlipidemia, (yes vs. no)	0.71 (0.36-1.39)	0.91 (0.56-1.45)	
Diabetes, (yes vs. no)	1.40 (0.77-2.54)	1.59 (1.10-2.31)	
Smoking (ever vs. never)	1.68 (0.79-3.54)	1.36 (0.85-2.17)	
BMI (kg/m ²)	0.96 (0.88-1.05)	0.98 (0.93-1.04)	
History of stroke, (yes vs. no)	5.56 (2.59-11.96)	4.85 (3.17-7.43)	
History of cardiovascular disease, (yes vs. no)	1.02 (0.39-2.65)	0.90 (0.52-1.58)	
MRI markers			
Cortical infarct, (yes vs. no)	14.91 (6.40-34.71)	13.64 (9.40-19.78)	
Lacunar infarct, (yes vs. no)	3.53 (1.87-6.63)	4.94 (3.25-7.50)	
WMH volume, ml, log transformed	2.61 (1.40-4.85)	2.28 (1.55-3.33)	1.
Cerebral microbleed (yes vs. no)	1.34 (0.74-2.43)	1.72 (1.15-2.57)	
Intracranial stenosis (yes vs. no)	1.97 (1.02-3.80)	3.57 (2.40-5.31)	

*Adjusted for age, gender, ethnicity, hypertension, history of stroke (significant from model I) †Adjusted for age, gender, ethnicity, hypertension, diabetes and history of stroke (significant from model I)

Hilal S, et al. (Neurology, 2016)

Review

Detection, risk factors, and functional consequences of cerebral microinfarcts

Susanne J van Veluw, Andy Y Shih, Eric E Smith, Christopher Chen, Julie A Schneider, Joanna M Wardlaw, Steven M Greenberg, Geert Jan Biessels

Cerebral microinfarcts are small lesions that are presumed to be ischaemic. Despite the small size of these lesions, affected individuals can have hundreds to thousands of cerebral microinfarcts, which cause measurable disruption to structural brain connections, and are associated with dementia that is independent of Alzheimer's disease pathology or larger infarcts (ie, lacunar infarcts, and large cortical and non-lacunar subcortical infarcts). Substantial progress has been made with regard to understanding risk factors and functional consequences of cerebral microinfarcts, partly driven by new in-vivo detection methods and the development of animal models that closely mimic multiple aspects of cerebral microinfarcts in human beings. Evidence from these advances suggests that cerebral microinfarcts can be manifestations of both small vessel and large vessel disease, that cerebral microinfarcts are independently associated with cognitive impairment, and that these lesions are likely to cause damage to brain structure and function that extends beyond their actual lesion boundaries. Criteria for the identification of cerebral microinfarcts with in-vivo MRI are provided to support further studies of the association between these lesions and cerebrovascular disease and dementia.

Lancet Neurol 2017

Published Online July 14, 2017 http://dx.doi.org/10.1016/ S1474-4422(17)30196-5

Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands (S J van Veluw PhD, Prof G J Biessels MD); Department of Neurology, Massachusetts General Hospital

Cortical Cerebral Microinfarcts : Future Studies

cross sectional studies of CMI and molecular imaging (amyloid, tau PET) brain connectivity, brain perfusion, lesion symptom mapping, Retinal imaging and **blood biomarkers** longitudinal studies of CMI and cognition, MRI markers, **Retinal imaging**

Plasma NTproBNP and hs-cTnT are associated with dementia and CIND, only when accompanied by presence of CeVD Hilal et al, Medicine 2015

5%CI)

CI = confidence interval, CIND = cognitive impairment no dementia, OR = odds ratios.

* Adjusted for age, gender, education, hypertension, and cardiovascular diseases (atrial fibrillation, congestive heart failure, and myocardial infarction).

		Presence of Significant Cerebrovascular Diseases				
	Ab	Absence		Presence		
	CIND $(n = 37)$, OR $(95\% CI)^*$	Dementia (n = 34), OR (95% CI) [*]	CIND $(n = 41)$, OR $(95\% CI)^*$	Dementia $(n = 46)$, OR $(95\% CI)^*$		
Pro brain natriuret	ic peptide					
1st tertile	1	1	1	1		
2nd tertile	0.87 (0.28-2.77)	0.51 (0.11-2.39)	2.35 (0.72-7.66)	1.50(0.38-5.99)		
3rd tertile	2.52(0.44 - 14.35)	4.77 (0.63-36.06)	4.59 (0.75-27.93)	7.74 (1.23-48.58)		
High sensitivity Tr	oponin T		La destante de Contraction de Contra	· · · · · · · · · · · · · · · · · · ·		
1st tertile	1	1	1	1		
2nd tertile	0.96 (0.28-3.29)	0.61 (0.12-3.08)	4.36 (1.14-16.71)	3.62 (0.47-27.69)		
3rd tertile	1.35 (0.28-6.47)	3.82 (0.55-26.38)	9.05 (1.64-49.79)	16.89 (2.02-142.67)		

CI = confidence interval, CIND = cognitive impairment no dementia, OR = odds ratios.

* Adjusted for age, gender, education, hypertension, and cardiovascular diseases (atrial fibrillation, congestive heart failure, and myocardial infarction).

Association of subclinical cardiac biomarkers and clinical cardiac diseases with CMIs (Hilal et al, JAMA Neurology 2017)

	CMI counts	CMI (presence vs. absence)	CMI (≥3 vs. <3)
	RR (95%CI)	OR (95%CI)	OR (95%CI)
Subclinical cardiac diseases			
Log pro brain natriuretic peptide			
Model I	3.85 (3.18-4.66)	2.71 (1.49-4.93)	5.34 (2.37-12.06)
Model II	3.19 (2.62-3.90)	2.51 (1.34-4.69)	4.63 (1.98-10.83)
Log high sensitivity Troponin T			
Model I	7.98 (5.08-12.53)	3.99 (1.30-12.22)	13.23 (2.38-73.64)
Model II	4.86 (3.03-7.08)	3.19 (0.94-10.75)	9.41 (1.54-57.32)
Clinical cardiac diseases			
Atrial fibrillation			
Model I	2.14 (1.59-2.88)	4.42 (1.73-11.32)	4.99 (1.72-14.47)
Model II	1.62 (1.20-2.18)	3.76 (1.42-9.91)	3.94 (1.32-11.74)
Ischemic heart disease			
Model I	5.61 (4.41-7.14)	3.28 (1.43-7.54)	7.24 (2.67-19.63)
Model II	4.31 (3.38-5.49)	2.64 (1.12-6.22)	5.67 (2.05-15.65)
Congestive heart failure			
Model I	2.94 (1.86-4.65)	9.98 (1.09-91.56)	15.37 (2.24-105.38)
Model II	2.05 (1.29-3.25)	7.23 (0.78-66.77)	10.68 (1.54-74.06)

The Brain-Heart Axis : Future Studies

cross sectional studies of CeVD markers and molecular imaging brain connectivity, brain perfusion, retinal imaging **blood biomarkers Cardiac and vascular biomarkers** longitudinal studies of brain and heart biomarkers with cognition brain, cardiac and vascular biomarkers Interventional studies

SINGapore intervention study to prevEnt coGnitive impairment and disability (SINGER) study

Based on the ground breaking FINGER study in collaboration with World Wide FINGERS Randomised controlled study of multiple interventions in elderly patients at risk of cognitive decline (E Koo and C Chen) Cognitive (X Xu) Diet (CJ Henry) Exercise (E Chew) Vascular risk modification (C Chen) Pilot proof of concept and feasibility studies to be proposed and executed prior to larger scale study FINGER vs SINGER adaptations

The burden of "silent" cerebrovascular disease

Underrecognized

Ignored

Important

Model of AD Progression

AMYLOID PLAQUES AND NEUROFIBRILLARY TANGLES

MOLECULAR IMAGING

Aglow with Alzheimer's. The first images of a β -amyloid tracer in humans show an ominous signal in the brains of patients with early symptoms of Alzheimer's disease. Helmuth, L. Science, **297**, 752-3 (2002).

Utility of Amyloid PET

To define molecular pathology in vivo for diagnostic purposes Identifying pre-clinical subjects with early AD pathology Differentiating MCI due to AD from non AD-MCI Differentiating AD from late onset FTD Differentiating VaD from AD+CVD To identify patients for anti-amyloid trials To identify contribution of other pathologies to progression Ideally as part of complete diagnostic workup which includes MRI and FDG-PET NOT for persons without cognitive impairment (except in research)

Amyloid PET Research Objectives in NUS

Investigating the natural history of individuals with mild cognitive impairment (MCI) with high amyloid PET signal

- Is their progression affected by concomitant vascular pathology?
- Prevalence of amyloid PET in ApoE4 negative AD and MCI subjects
- Prevalence of amyloid PET in VaD and vascular MCI subjects

Prevalence of Suspected Non-Alzheimer Pathophysiology (SNAP) and association with CeVD

Amyloid PET Research Objectives in NUS

This study will help develop molecular neuroimaging at NUHS which would be an important platform for the development of other molecular ligands such as tau (neurofibrillary tangles) microglia (neuroinflammation) neurotransmitters Synaptic / neuronal density which would facilitate important translational research

Amyloid PET Research Objectives in NUS

Accelerating the discovery/validation of accessible and cost-effective biomarkers such as retinal imaging and in body fluids. To examine the relationship between alterations in retinal ganglion cell (RGC) neuronal and axonal structure as well as in the retinal microvascular network to prognostic neuroimaging biomarkers of AD (PiB-PET) To examine the relationship between blood biomarkers of inflammation, vascular disease (and amyloid) to PiB-PET

C11-PIB PET in NUS First Scans in April 2016

Composite SUVR = 1.92 Clinical Dx: AD ApoE4 +

NOT FOR DIAGNOSTIC USE

PET Recruitment status Target: 215 (100 MCI, 45 AD, 25 VAD, 45 NCI)

	Completed	Scheduled	To recruit
AD	45	0	10
MCI	100	0	0
VAD	25	0	5
NCI	45	0	20
Total	170		45

Completion date: end December 2018 Funded by NUS Aspiration Grant

CONCLUSIONS

Neuroimaging (including amyloid PET) is useful for the management of and research into dementia & cognitive impairment Diagnosis Prognosis Drug discovery Monitoring of treatment

Future Directions

Papers on the

Impact of amyloid PET on diagnosis Association of CeVD with amyloid Prediction of cognitive decline Funding applications to Investigate mechanisms of SNAP, successful aging **Blood biomarkers** Tau PET F18 amyloid PET

MK-6240, a tau PET tracer developed by Merck and now Cerveau Technologies

Courtesy of Christopher Rowe

Alzheimer's & Dementia 14 (2018) 535-562

2018 National Institute on Aging—Alzheimer's Association (NIA-AA) Research Framework

NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease

		Cognitive stage					
		Cognitively Unimpaired	Mild Cognitive Impairment	Dementia			
	A' T'(N)'	normal AD biomarkers,	normal AD biomarkers with	normal AD biomarkers with			
		cognitively unimpaired	MCI	dementia			
	$A^{+}T(N)^{-}$	Preclinical Alzheimer's	Alzheimer's pathologic change	Alzheimer's pathologic change			
e		pathologic change	with MCI	with dementia			
ğ	$A^{+}T^{+}(N)^{-}$	Preclinical Alzheimer's	Alzheimer's disease with	Alzheimer's disease with			
Pro	$A^{+}T^{+}(N)^{+}$	disease	MCI(Prodromal AD)	dementia			
er	$A^{+}T^{-}(N)^{+}$	Alzheimer's and					
rk		concomitant suspected non	Alzheimer's and concomitant	Alzheimer's and concomitant			
ioma		Alzheimer's pathologic	suspected non Alzheimer's	suspected non Alzheimer's			
		change, cognitively	pathologic change with MCI	pathologic change with dementia			
-		unimpaired					
	$A^{-}T^{+}(N)^{-}$	non-Alzheimer's	non-Alzheimer's pathologic	non-Alzheimer's pathologic change			
	$A^{T}T(N)^{+}$	pathologic change,	change with MCI	with dementia			
	$A^{T}(N)^{+}$	cognitively unimpaired					

Detecting and intervening in prodromal dementia is important

An early or premonitory symptom or sign (Neuroimaging / **Blood biomarkers)** that indicates the onset or development of disease

