Diabetes mellitus – advancing frontiers

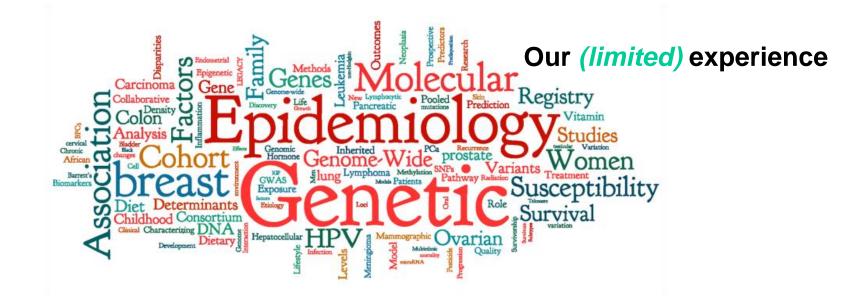
6 Dec 2021 Scientific Paradigm Shifts Track (Part 1) NMRC AWARDS CEREMONY AND RESEARCH SYMPOSIUM 2021

Dr Lim Su Chi

MBBS, MRCP, FRCP, FAMS, PhD Deputy Director, Diabetes Centre Senior Consultant, Department of Medicine Clinical Director, Clinical Research Unit, KTPH

Diabetes Mellitus – advancing frontiers Outline

Clinical epidemiology of diabetic kidney disease
 (DKD) – observations from our longitudinal cohorts.


New frontiers in diabetes –

- Disease modifying agents (SGLT2i & Incretins analogue),
- Bariatric surgery and diabetes remission
- Monogenic diabetes (precision diabetes),
- Technologies (CGM & closed-loop hybrid insulin delivery)

Summary

SGLT2i: Sodium–glucose co-transporter 2 inhibitors CGM: Continuous Glucose Monitoring

Diabetic Kidney Disease (DKD)

Distribution: e.g. disease prevalence

Determinants: i.e. causes

Metabolic Research at Yishun Health: 3 longitudinal diabetes cohorts

> Setup in **2002** Diabetic \succ ~5,800 hospital patients with diabetes, enriched with kidney Nephropathy (DN) disease Cohort > Baseline blood and urine collected. Follow-up by EHR. Setup in 2011 > ~2,000 hospital & NHGP patients with type 2 diabetes Recall every 3 yearly 2011: Singapore Study of Macroangiopathy and Micro-vascular Monitor multiple endpoints – vascular function, DKD, Reactivity in Type 2 Diabetes Cohort Diabetic foot syndrome, cognitive function. Setup in 2017 Gorie ~1,200 hospital ambulatory patients with diabetes Web-base dietary assessment, physical activity (wearable) Diabetic Kidney Disease Onset and Progression RISk Factors Cohort Monitor DKD, NAFLD, 24 hour ambulatory BP

Study to identify genetic risk of kidney diseases

National Medical

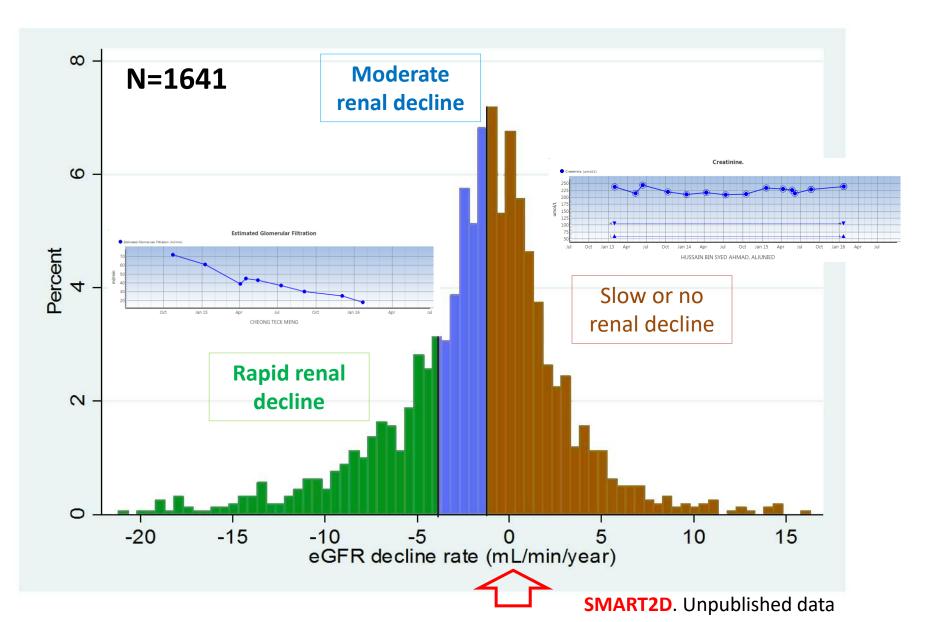
Members of the 10th Research, Innovation and Enterprise Council (RIEC), chaired by **Prime Minister Lee Hsien Loong**, meeting on Friday afternoon (July 21, 2017) to discuss the progress made on the RIE2020 plan launched in 2016.

{*From left to right*}: Prof Thomas Coffman, Prof Tai E Shyong, Prof Wong Tien Yin & A/Prof Lim Su Chi – **Theme PIs of DYNAMO.**

Diabetes studY in Nephropathy And other Microvascular cOmplications

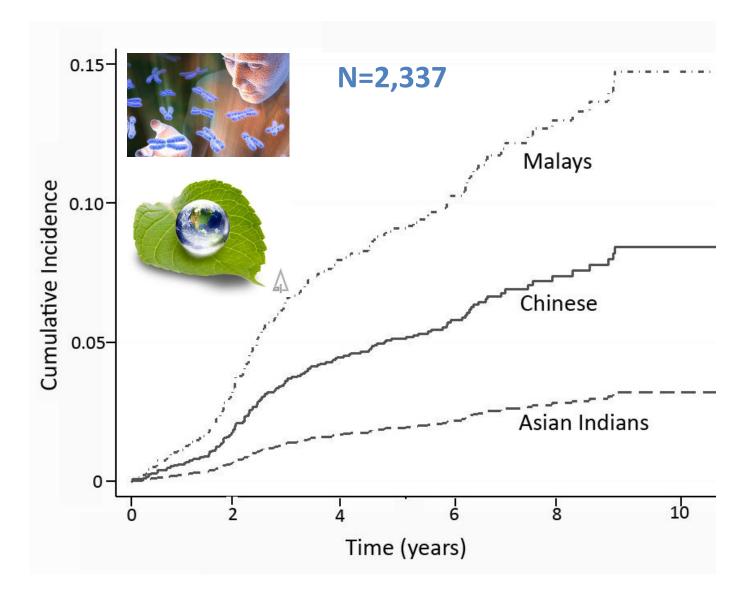
STRAITS TIMES PUBLISHED JUL 22, 2017, 5:00 AM SGT

\$25m research effort aimed at spotting diabetic patients at risk so they can be treated earlier


DKD: Distribution by GFR and Albuminuria Categories (N=1861)

SMAF	a2D	Very high, 241, 13.0%		Persister	it albuminuria c	ategories
	I Healthcare Group	High, 239, 12.8% Low, 875, 47.0%		A1	A2	A3
Khoo Teck Puat Hospital Alexandra Health		Mod, 506, 27.2%		Normal to mildly increased	Mod increased	Severely increased
				<30mg/g	30-300mg/g	>300mg/g
	G1	Normal or high	≥90	469 (25)	256 (14)	55 (3)
.73 m ²)	G2	Mildly decreased	60-89	406 (22)	188 (10)	88 (5)
nin per 1	G3a	Mildly to mod decreased	45-59	62 (3)	68 (4)	49 (3)
ies (ml/n	G3b	Mod to severely decreased	30-44	28 (2)	53 (3)	37 (2)
GFR categories (ml/min per 1.73	G4	Severely decreased	15-29	3 (0)	19 (1)	48 (3)
GFR	G5	Kidney failure	<15	0 (0)	1 (0)	31 (2)

Green: low risk; yellow: moderately increased risk; orange: high risk; red: very high risk


Low SK, Lim SC et al. Ann Acad Med Singapore. 2015;44:164-71

Progression to ESRD by ethnicity

JJ Liu, SC Lim et al. Diabet. Med. 33, 332–339 (2016)

Alexandra Health Forum 2016

Calculator for Predicting Renal Progression in Patients with Type 2 Diabetes Mellitus S Low & Lim SC et al. Diabetes Res Clin Pract. 2016;123:49-54

This is designed for adults with Type 2 Diabetes Melli	tus		Training data set	Test data set
Variables at Baseline	Enter value	Total number of subjects	1107	475
Urinary Albumin-to-Creatinine Ratio (mg/g)	Discrimination			
HbA1c (%)	9	AUC (95% CI)	0.80 (0.77–0.83)	0.83 (0.79–0.87)
estimated glomerular filtration rate	45	Р	<0.001	<0.001
Age (years)	70	Calibration		
Systolic BP (mmHg)	130	Hosmer-Lemeshow Ĉ test P	0.986	0.928
LDL-cholesterol (mmol/l)	4	Sensitivity (%) Specificity (%)	71.4 % 72.2%	75.6% 72.3%
		PPV (%)	65.3%	68.9%
		NPV (%)	77.4%	78.5%

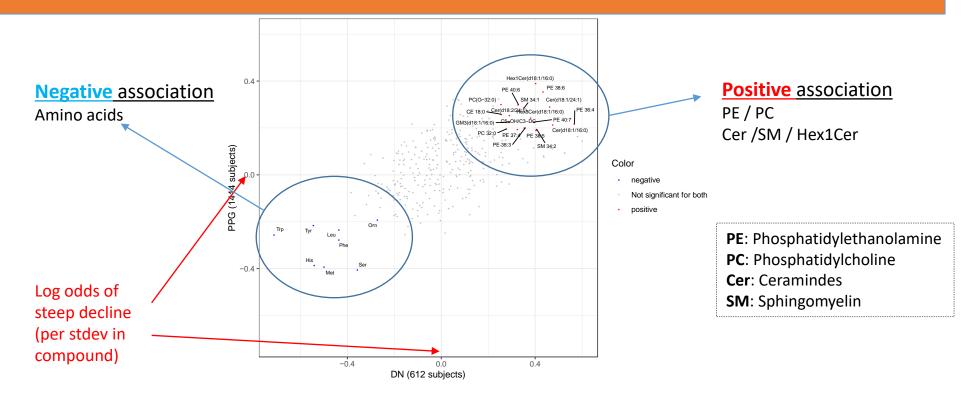
Notes

1. Renal progression is defined as as eGFR decline as defined in the KDIGO 2012 Clinical Practice Guidelines –

duration of 5.5 years.

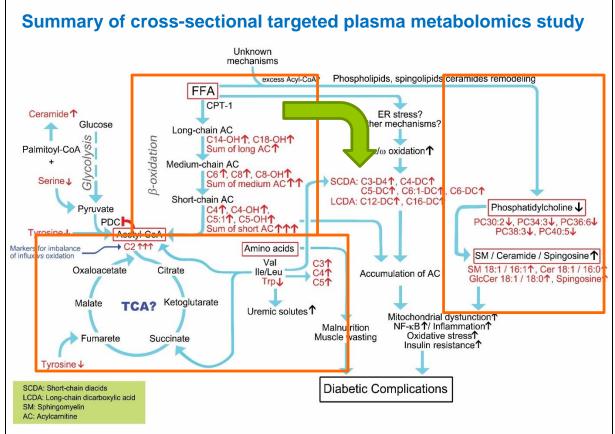
a decline in eGFR category [stage 1, ≥90 ml/min/1.73m2; stage 2, 60-89 ml/min/1.73m2; stage 3a, 45-59 ml/min/1.73m2; stage 3b, 30-44 ml/min/1.73m2; stage 4, 15-29 ml/min/1.73m2; and stage 5, <15 ml/min/1.73m2],

coupled with a 25% or more reduction in eGFR from baseline.


2. The model is based on patients with CKD stages 1-4.

Reference

1. Levin A, Stevens PE. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 2014; 85: 49-61.


What metabolomics-signature is associated with > $30\% \downarrow$ in renal function (eGFR) among people with type 2 diabetes ?

Targeted Metabolomics: Regression Analysis with Adjustment for Confounders

- $\Delta \text{ eGFR} < -30\% \sim Compound + Age + Gender + Ethnicity + DM Duration + eGFR baseline$
- Subjects with baseline eGFR < 60 were removed

Unpublished preliminary data Courtesy of A/Prof Choi Hyung Won, NUHS

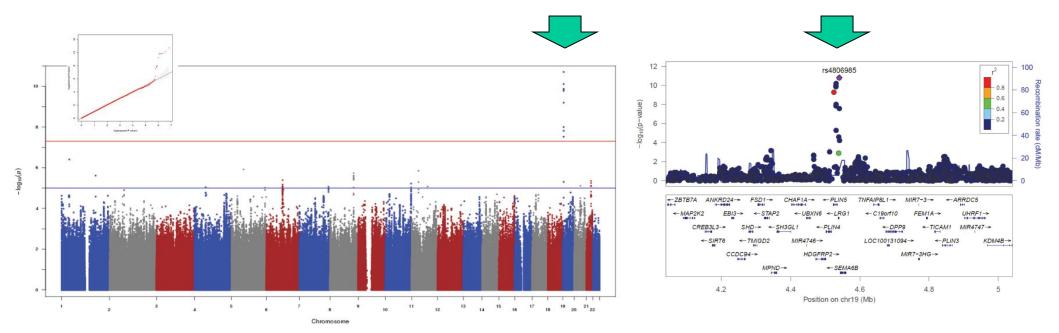
↑ Even-chain acylcarnitine, ↑
 dicarboxylic acylcarnitine si

observed:

dicarboxylic acylcarnitine suggest incomplete fatty acid β-oxidation (FAO) and shunting to ω-oxidation i.e. mismatch (supply & demand) substrate flux and utilization in mitochondria

In Asian patients with T2DM and DKD, we

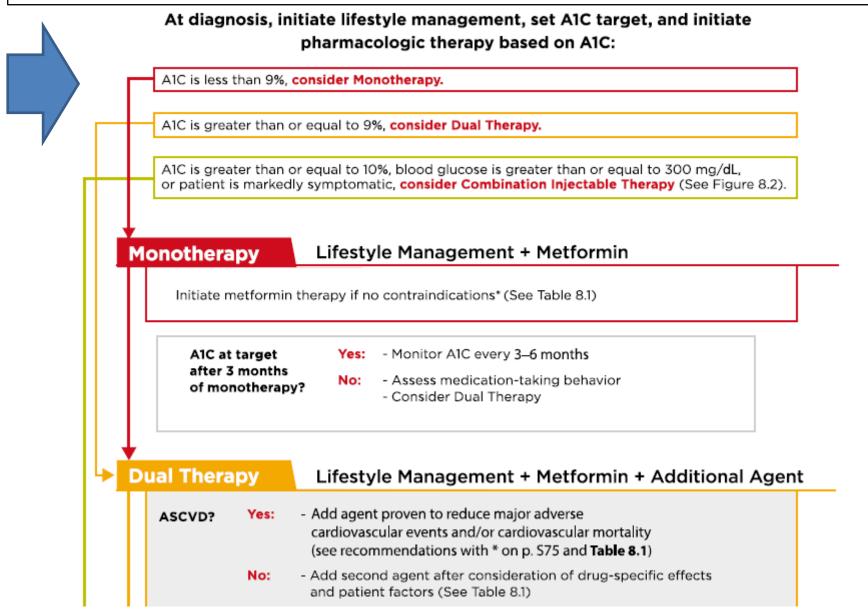
- ↓ plasma phosphatidylcholine levels and ↑ long-chain sphingomyelin and ceramide levels suggested remodeling of sphingolipids→ proinflammatory milieu
- Short chain acylcarnitine suggests accelerated catabolism of amino acids i.e. altered energy substrate selection

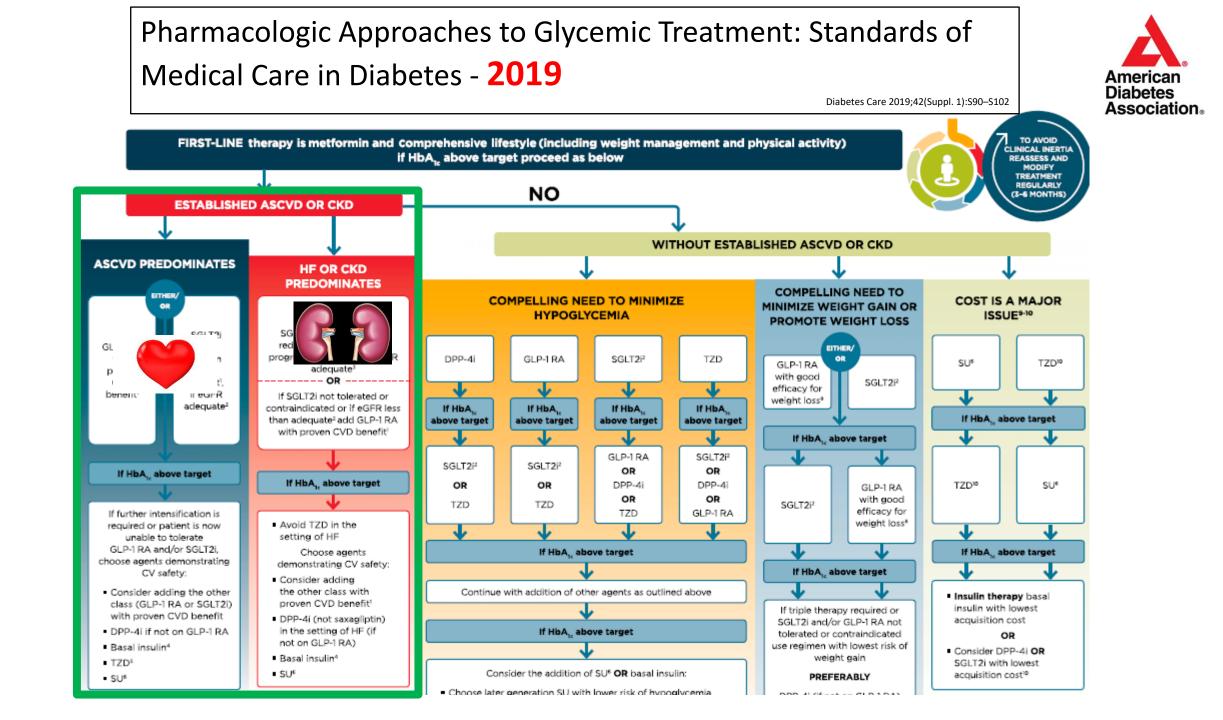

To follow-up on mitochondria dysfunction, we study whether urine TCA cycle metabolites were associated with progressive CKD in patients with T2DM

Liu & Lim et al. Kidney Int Rep (2017) 2, 470-480

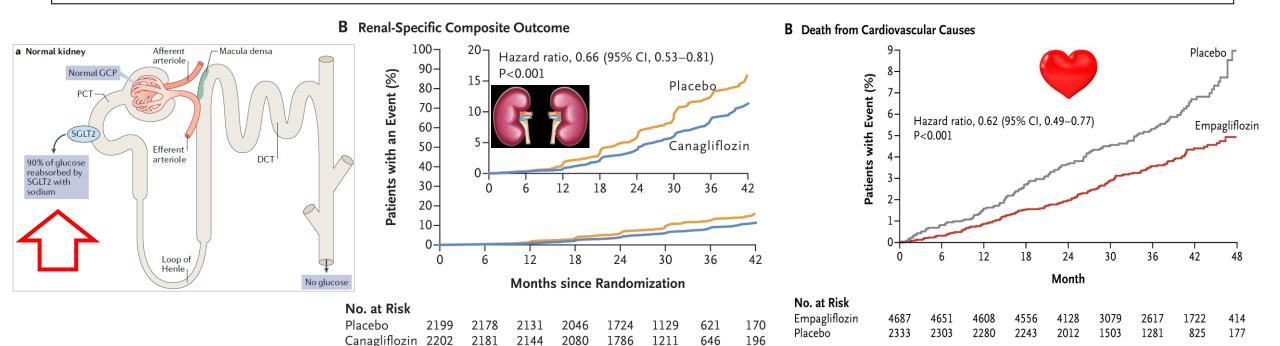
Association of genetic variants for plasma LRG1 with rapid decline in kidney function in patients with type 2 diabetes.

Resham L GURUNG, Rajkumar DORAJOO, Yiamunaa M, Jian-Jun LIU, Sharon Li Ting PEK, Jiexun WANG, Ling WANG, Xueling SIM, Sylvia LIU, Yi-Ming SHAO, Keven ANG, Tavintharan SUBRAMANIAM, Wern E TANG, Chee Fang SUM, Jian-Jun LIU, and Su Chi LIM.

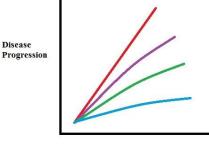

J Clin Endocrinol Metab 2021;106:2384-2394.


New frontiers in diabetes

Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes - **2018**

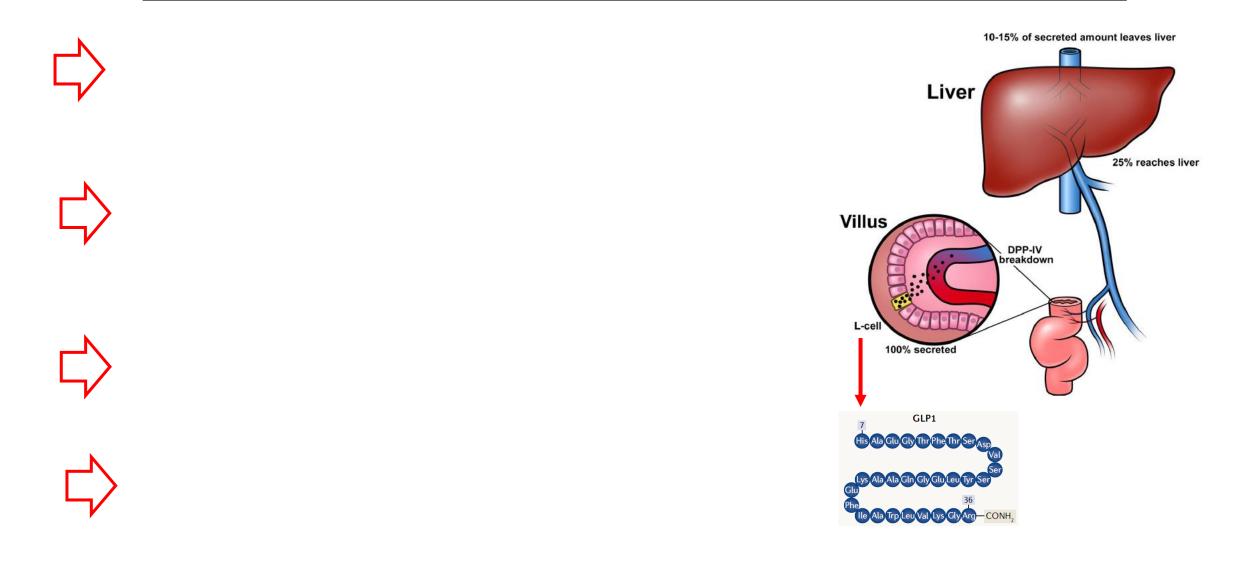


Diabetes Care 2018;41(Suppl. 1):S73–S85


Sodium-glucose co-transporter 2 (SGLT2) inhibitors and Cardio-renal Outcomes in Type 2 **Diabetes & Nephropathy**

0									
Renal-s	pecifi	c com	posit	te of	end-sta	age ki	dney c	lisease,	а

doubling of the creatinine level, or death from renal causes

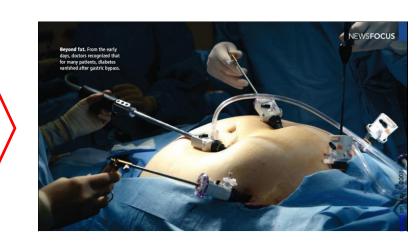


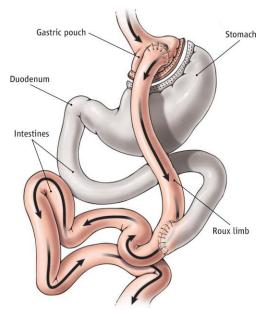
Time

EMPA-REG NEJM 2015;373:2117-28; CREDENCE DOI: 10.1056/NEJMoa1811744; 2019; DAPA-CKD NEJM 2021.

Incretins (gut hormones) - Glucagon-like peptide 1 in health and disease

Figure 3: All-cause mortality, hospital admission for heart failure, and kidney outcomes


Nature Reviews | Endocrinology 2018

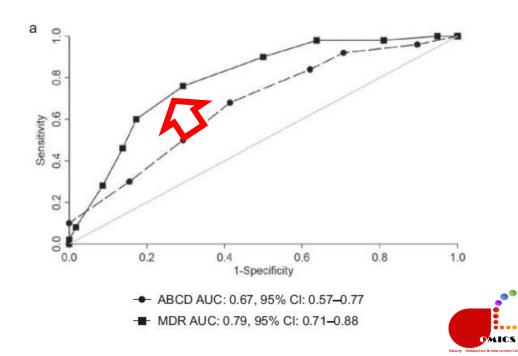

Remission of diabesity (type 2 diabetes)

Bariatric Surgery

cohort (OMICS)

Unintended effects. Roux-en-Y gastric bypass surgery reduces the stomach to a fraction of its original size and skips past part of the small intestine, which causes profound metabolic changes in the gut.

An adult human islet. Red colour shows insulin green shows glucagon blue shows nuclei


OMICS: Obesity Metabolic Intervention Cohort Study Science. 2008 ;320:438-40; S4 | Nature Milestones | Diabetes | June 2021 > Obes Surg. 2020 Sep;30(9):3387-3393. doi: 10.1007/s11695-020-04576-3.

Metabolic Surgery Diabetes Remission (MDR) Score a New Preoperative Scoring System for Predicting Type 2 Diabetes Remission at 1 Year After Metabolic Surgery in the Singapore Multi-ethnic Asian Setting

Mei Chung Moh¹, Anton Cheng², Chun Hai Tan², Boon Khim Lim¹, Bo Chuan Tan², Deborah Ng², Chee Fang Sum³, Tavintharan Subramaniam¹³, Su Chi Lim⁴⁵⁶

Variable	Total (<i>n</i> = 114)	Non-remitters $(n = 60)$	Remitters $(n = 54)$	P value
Age (years)	46±9	48 ± 10	44 ± 8	0.013
Men, n (%)	55 (48.2)	24 (40.0)	31 (57.4)	0.063
Ethnicity, n (%)				
Chinese	37 (32.4)	21 (35.0)	16 (29.6)	0.659
Malay	46 (40.4)	25 (41.7)	21 (38.9)	
Indian	20 (17.5)	8 (13.3)	12 (22.2)	
Others	11 (9.6)	6 (10.0)	5 (9.3)	
BMI (kg/m ²)	40.1 ± 6.6	39.9 ± 7.2	40.3 ± 5.9	0.736
FPG (mmol/L) ^a	9.7 ± 3.7	10.6 ± 3.7	8.6 ± 3.3	0.005
HbA1c (%)	8.8 ± 1.9	9.4 ± 2.0	8.1 ± 1.6	< 0.001
Diabetes duration (years)	6 (2-10)	9 (6-12)	3 (1-6)	< 0.001
Hypertension, n (%)	89 (78.1)	47 (78.3)	42 (77.8)	0.943
Hyperlipidaemia, n (%)	98 (86.0)	57 (95.0)	41 (75.9)	0.003
C-peptide (ng/ml)	3.1 (2.0-3.9)	2.7 (1.6-3.9)	3.3 (2.3-3.9)	0.136
HOMA-IR ^a	2.7 (1.7-3.6)	2.6 (1.6-3.8)	2.7 (1.9-3.2)	0.882
HOMA-B (%) ^a	55.0 (27.0-90.6)	42.0 (22.9-87.1)	76.8 (43.0-107.5)	0.005
Medications, n (%)				
OHGA	103 (90.4)	54 (90.0)	49 (90.7)	0.894
Insulin	42 (36.8)	33 (55.0)	9 (16.7)	< 0.001
Anti-hypertensives	75 (65.8)	42 (70.0)	33 (61.1)	0.318
Lipid-lowering	85 (74.6)	52 (86.7)	33 (61.1)	0.002
Surgery, n (%)				
RYGB	80 (70.2)	38 (63.3)	42 (77.8)	0.092
SG	34 (29.8)	22 (36.7)	12 (22.2)	

MDR	0	1	2	3
Age (years)	> 50	41–50	≤ 40	-
HOMA2-B (%)	≤ 40	>40-80	>80	-
DM duration (years)	≥ 10	6–9	2–5	<2
HbA1c (%)	≥ 10	8.5-<10	7.0-<8.5	<7

BMI, body mass index; FPG, fasting plasma glucose; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-B, homeostasis model assessment of β -cell function; OHGA, oral hypoglycaemic agent; RYGB, Roux-en-Y gastric bypass; SG, laparoscopic sleeve gastrectomy

OMICS: Obesity Metabolic Intervention Cohort Study

Durability of a primary care-led non-surgical (VLCD) weightmanagement intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial

ITT Primary Outcome Results

1st Co-Primary Outcome: ≥15 kg weight loss

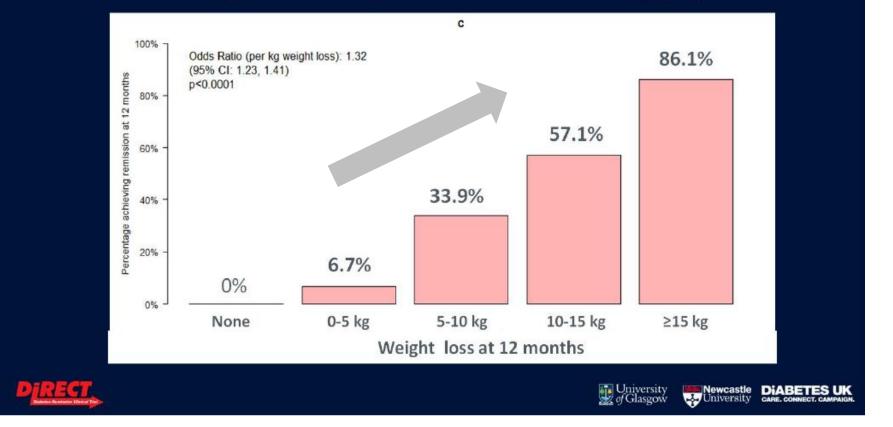
 Intervention
 36/149 (24%)
 p <0.0001</th>

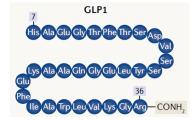
 Control
 0/149

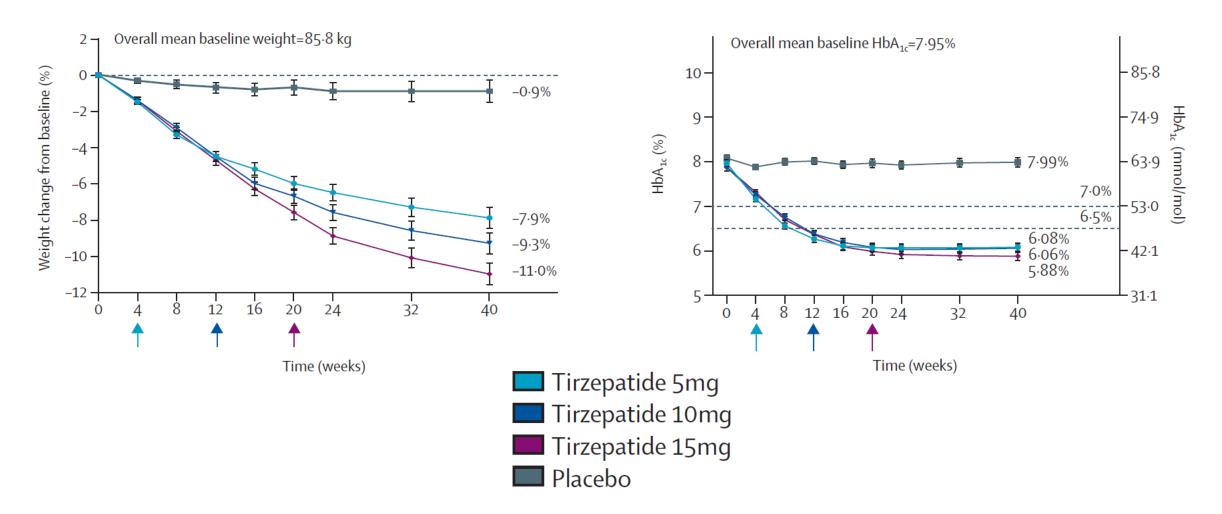
2nd Co-Primary Outcome: Remission of diabetes*

Intervention 6 Control

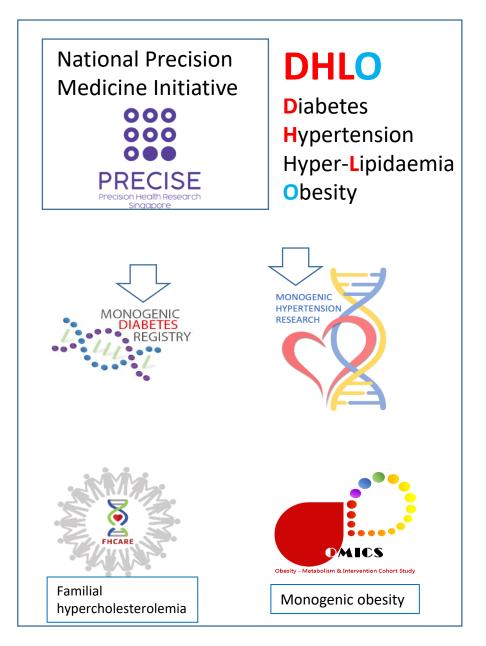
68/149 (46%) p <0.0001 6/149 (4%)

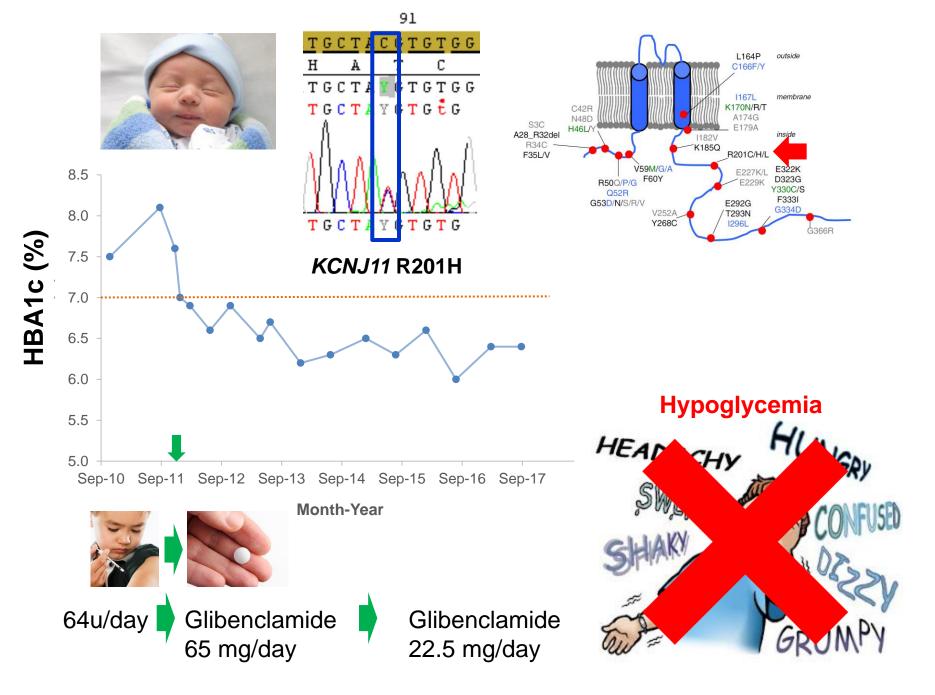

* HbA1c <48 mmol/mol, off all anti-diabetes medication for at least 2 months


Lancet Diabetes Endocrinol 2019; 7: 344–55


Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT openlabel, cluster-randomised trial

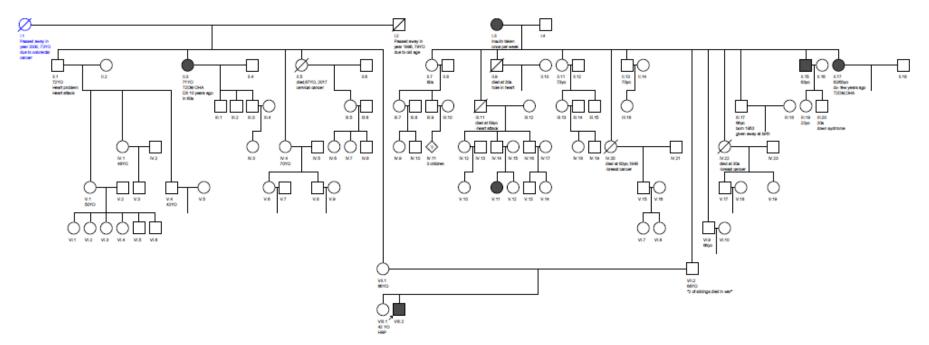
Remissions by 12m weight loss: entire study population


Incretins in obesity and diabetes



Incretin drugs in diabetic kidney Disease. Nature Reviews | Nephrology 2020; Lancet 2021; 398: 143–55

Monogenic subset of people with complex traits DHLO.


- A non-trivial subset of individuals with complex trait (e.g. DHLO) can be attributable to a monogenic condition (e.g. FH and MODY).
- Monogenic disease are individually rare but collectively abundant.
- They consume healthcare disproportionally (20/80 rule).
- They are the low-hanging fruits for genomic medicine i.e. targeted therapy with good results may be possible.
- > They shed light on disease biology.

Ang SF, Lim SC et al. European J of Hum Gen (2019) 27:989–993

Family Cascade

Race		Age of Onset		BMI (kg/m²)	Insulin treatment	OHA treatment	HbA1c (%)	HNF1B mutation	CKD-Epi-eGFR (ml/min/1.73m ²)	Diagnostic delay
Chinese	М	23	Yes	17.2	Glargine 14U ON (still giving 16), Glulisine 4U TDS (still giving 6U for lunch and dinner only)	Nil	7.3	Whole-gene deletion	92	10 years

The *FreeStyle Libre* System provides more than just a glucose number

Reader display after a scan

6

18:00

FreeStyle Libre

2 mmol

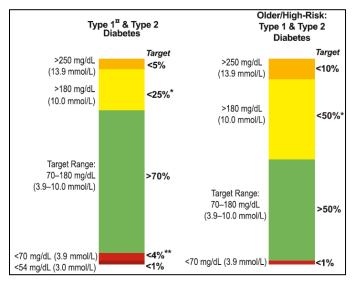
22:00

22:23
Ends in 13 days

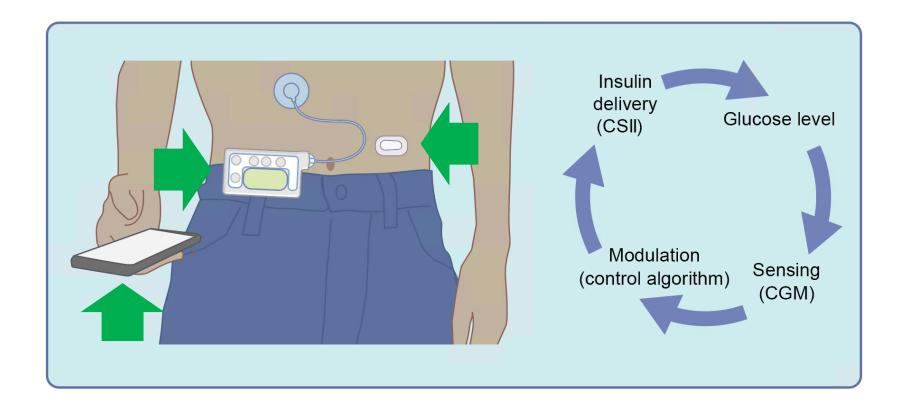
14:00

Current – Glucose reading

Glucose Trend Arrow


Direction and rate glucose is heading

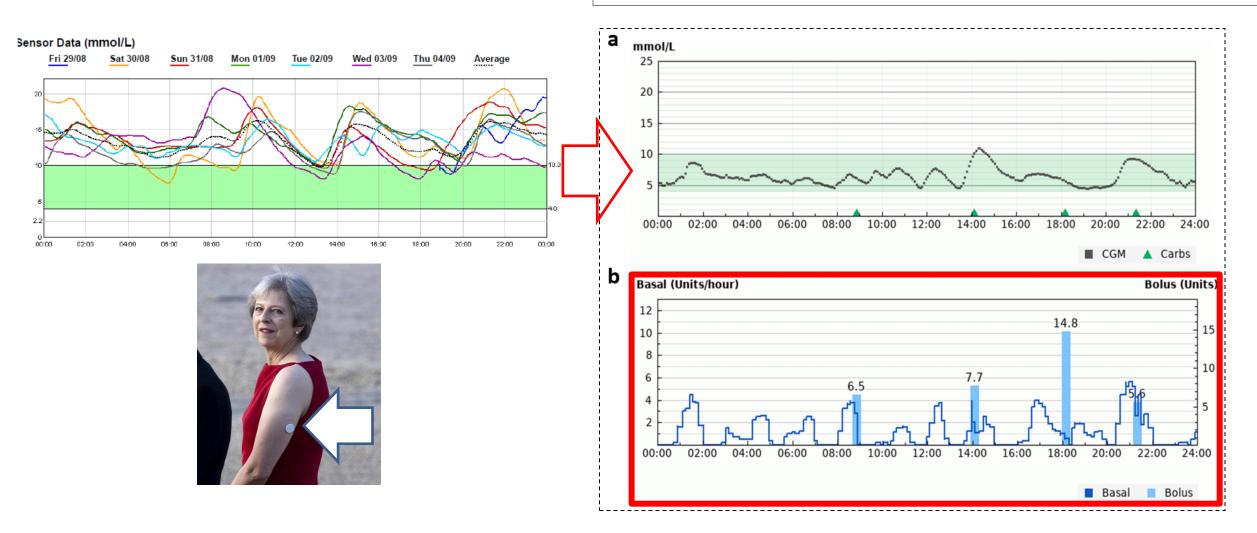
Glucose history


TIME IN RANGES

	Very High (>13.9 mmol/L)14% (3h 21min)
	High (10.1–13.9 mmol/L) 21% (5h 2min)
•	Target Range (3.9–10.0 mmol/L) 54% (12h 51min)
	Low (3.0–3.8 mmol/L)

Diabetologia (2020) 63:242–252 Diabetes Care 2019;42:1593–1603

Schematic of the configuration of closed-loop insulin delivery


Boughton and Hovorka (2021) Diabetologia DOI 10.1007/s00125-021-05391-w

Continuous glucose monitoring (CGM)

Hybrid closed-loop glucose control:

(a) 24 h of sensor glucose data.

(b) Algorithm-driven insulin delivery and manual insulin boluses.

Boughton and Hovorka (2021) Diabetologia DOI 10.1007/s00125-021-05391-w

Scientific Paradigm Shifts of Diabetes Mellitus

- Major advances in the mechanistic understanding of diabetes and its complications have been achieved.
- Disease-modifying molecular-target guided therapeutics are now available.
- In appropriately selected patients, inducing diabetes remission (dietary, pharmacological and surgical options) may be the preferred treatment strategies.
- Monogenic diabetes is the "poster-boy" for precision diabetes medicine.
- Technological advances in glucose monitoring and insulin delivery have made intensive diabetes management a realizable goal.

The future of war against diabetes is now

Acknowledgement

- Diabetes Centre
- Endocrinology Dept
- CRU Research Team
- Collaborators
 - Dr Kon Y C Winston (TTSH)
 - Dr Fabian Yap KP (KKH)
 - Dr Rashida Farhad Vasanwala (KKH)
 - Dr Joan Khoo (CGH)
 - Dr Loh Wann Jia (CGH)
 - Dr Lim Ziliang (NHGP-Yishun)
 - Dr Mogilan Mohan (NHGP-Yishun)
 - Dr Kung Jian Ming (NHGP-Yishun)

