Challenges in finding new treatments for TB

Nick Paton MD FRCP Professor of Infectious Diseases National University of Singapore

TUBERCULOSIS (TB)

• 2014:

8.6 million new cases
1.3 million deaths annually

Top causes of death worldwide in 2012.^{a,b} Deaths from TB

WHO TB report 2015

Estimated TB incidence rates by WHO region, 1990–2014. Estimated TB incidence rates (green) and estimated incidence rates of HIV-positive TB (red). Shaded areas represent uncertainty bands.

WHO TB report 2015

Percentage of new TB cases with MDR-TB^a

WHO TB report 2015

Standard TB treatment

- 2 months induction• RIF, INH, PZA, EMB
- 4 months continuation• RIF & INH

3 approaches to shorten treatment for TB

 New drug regimens with improved activity against dormant / persistent bacteria -"sterilising activity"

 Improve the immune response to clear persistent bacteria

Innovative treatment strategies

3 approaches to shorten treatment for TB

 New drug regimens with improved activity against dormant / persistent bacteria -"sterilising activity"

 Improve the immune response to clear persistent bacteria

Innovative treatment strategies

Re-purposed drugs for TB

- Meropenem, imipenem,
- Linezolid
- Clofazimine

Testing combinations

- Many possible combinations of.....
 - old drugs
 - old drugs with modified doses
 - re-purposed drugs
 - new drugs

Testing new drugs / combinations

Phase I (healthy volunteers) Dose finding / tolerability PK / Drug interactions

Phase II (TB patients) EBA (2 wks.) and SSCC (8 wks.) Quantitative Cultures / time to conversion + PK/PD

Phase III (TB patients)

Large scale clinical trials Treatment failure / relapse Tolerability / safety

Phase IIa: Early Bactericidal Activity (EBA) trials

EBA *≠* sterilizing activity

Diacon et al, Am J Respir Crit Care Med 2015

Testing new drugs / combinations

Phase I (healthy volunteers) Dose finding / tolerability PK / Drug interactions

Phase II (TB patients) EBA (2 wks.) and SSCC (8 wks.) Quantitative Cultures / time to conversion + PK/PD

Phase III (TB patients)

Large scale clinical trials Treatment failure / relapse Tolerability / safety

Phase IIb: Serial sputum colony count (SSCC) trial

2m culture conversionprediction of relapse

2m culture conversion is a "reasonable predictor of sterilization in trials" but not individuals

Wallis Lancet 2010

Phase II SSCC trial: quinolones

Table 5Cox regression estimates for the speed ofsputum conversion

Treatment series	Hazard ratio	<i>P</i> vs. control	95%CI	
Before adjustment for covariates* Control GFX MXF OFX	1 1.257 1.726 0.887	0.3 0.009 0.6	 0.835–1.890 1.145–2.601 0.584–1.348	
After adjustment for covariates* Control GFX MXF OFX	1 1.519 1.683 0.830	0.054 0.017 0.4	0.993–2.324 1.098–2.578 0.542–1.271	

* Covariates were age, sex, HIV status and radiographic extent of disease. CI = confidence interval; GFX = gatifloxacin; MXF = moxifloxacin; OFX = ofloxacin.

Rustomjee 2008 Int. J TB Lung Dis

Quinolone trials in DS-TB

Time to Unfavorable Outcome

Gillespie NEJM 2014

SINGAPORE PROGRAMME OF RESEARCH INVESTIGATING NEW APPROACHES TO TREATMENT OF TUBERCULOSIS

SPRINT-TB RESEARCH THEMES

Theme 1 BACTERIAL TARGET DISCOVERY

Lead: A/Prof. Thomas Dick Department of Microbiology, NUS

Using genetic and chemical approaches to identify new mycobacterial targets. Theme 2 DRUG DISCOVERY

Lead: Prof. Alex Matter Experimental Therapeutics Centre, A*STAR

Screening, medicinal chemistry and pharmacology studies to develop new TB drug candidates. Preclinical devt/animal models

Theme 3 CLINICAL DEVELOPMENT

Lead: Prof. Nick Paton Department of Medicine, NUS

Conducting clinical trials to evaluate safety and efficacy of new drugs with the focus on novel treatment regimens for TB.

Theme 4 TREATMENT DELIVERY

Lead: Prof. Richard Coker School of Public Health, NUS

Studying individual and systemic barriers that hinder successful provision of effective combination therapy and develops solutions to these problems.

"Improving" Phase II TB trials

 Principle of testing drugs individually and in combination for a short period is valuable

• Problem is the outcome parameters

New outcomes in Phase II

- Whole blood bactericidal activity
- Cultures with resuscitation promotion factors
- Transcriptomics (bacterial and host)
- Imaging

Rifampicin WBA Study

Whole Blood Bactericidal activity of Rifampicin against *M.tuberculosis* H37Rv

WBA or Bacillary Killing : $\Delta \log_{10} CFU = \log_{10} (final) - \log_{10} (initial)$

TB vs Pneumonia

Pneumonia

Tuberculosis

6 weeks

De-risking Phase III

- Adaptive designs
- Observational trials

Multi arm, Multi stage trial design (MAMS)

CORE DELIVERABLE: SHORTER TB TREATMENT REGIMEN

TRUNCATE-TB Trial

Standard Regimen Arm A: 8 weeks rifampicin (10mg/kg), isoniazid, pyrazinamide, ethambutol, then 16 weeks rifampicin, isoniazid

Experimental Regimens

Arm B: 8 weeks rifampicin (35mg/kg), isoniazid, pyrazinamide, ethambutol, linezolid
Arm C: 8 weeks rifampicin (35mg/kg), isoniazid, pyrazinamide, ethambutol, clofazimine
Arm D: 8 weeks rifapentine, isoniazid, pyrazinamide, linezolid, levofloxacin
Arm E: 8 weeks isoniazid, pyrazinamide, ethambutol, linezolid, bedaquiline

Conducted in
4 countries in AsiaRecruitment
startingNumber of subjects
900Design
Muti-arm, multi-stage01/2017

Short, Highly Effective, and Inexpensive Standardized Treatment of Multidrug-resistant Tuberculosis

Armand Van Deun^{1,2}, Aung Kya Jai Maug³, Md Abdul Hamid Salim³, Pankaj Kumar Das³, Mihir Ranjan Sarker³, Paul Daru³, and Hans L. Rieder^{1,4}

¹International Union Against Tuberculosis and Lung Disease, Paris, France; ²Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; ³Damien Foundation Bangladesh, Dhaka, Bangladesh; and ⁴Institute of Social and Preventive Medicine, University of Zurich, Switzerland

TABLE 1. REGIMENS SEQUENTIALLY USED IN THE TREATMENT OF MULTIDRUG-RESISTANT TUBERCULOSIS, BANGLADESH DAMIEN FOUNDATION PROJECTS

Degimen	Intensive Phase	Continuation Phase 1	Continuation Phase 2	Patients Enrolled	
(sequence)				Number	Col %
1	3* KCOEHZP	12 OEHZP	6 EP	59	13.8
2	3(+) KCOEHZP	12 OHEZP		44	10.3
3	3(4) KCOEZP	12 OEZP		35	8.2
4	3(+) KCOEHZP	12 OHEZ		45	10.5
5	3(+) KCOEHZP	12 OHEZC		38	8.9
6	4(+) KCGEHZP	5 GEZC		206	48.2
Total number of	patients enrolled		427	100.0	

Definition of abbreviations: C = clofazimine; Col % = column percent; E = ethambutol; G = gatifloxacin; H = isoniazid; K = kanamycin; O = ofloxacin; P = prothionamide; Z = pyrazinamide.

Am J Respir Crit Care Med Vol 182. pp 684-692, 2010

Results from the initial 9m regimen cohorts

Original cohort (206 pts)		Updated cohort (515 pts)	
Cure	82.5%	81.2%	
Completion	5.3%	3.3%	
Default	5.8%	7.8%	
Death	5.3%	5.6%	
Failure	0.5%	1.4%	
Relapse	0.5%	0.8%	
Overall success rate:		Overall success rate:	
87.9% (95% CI 82.7, 92.6)		84.5% (95% CI 0.81, 0.88	
Am J Respir Crit Care Med Vol 182. 684–692, 2010		Aung et all, IJTLD 18(10):1180–118 <u>7, 2014</u>	

WHO May 2016

THE SHORTER MDR-TB REGIMEN

WHO May 2016

SINGAPORE PROGRAMME OF RESEARCH INVESTIGATING NEW APPROACHES TO TREATMENT OF TUBERCULOSIS

www.sprinttb.org