Singapore's Approaching Tsunami of Cardiovascular Disease

NMRC

Research Symposium 7^{7th} March 2017

Prof A Mark Richards

National University Heart Centre, Cardiovascular Research Institute NUHS, Singapore

National University Heart Centre, Singapore

Disclosures

Affiliation/Financial Relationships

- Grant/Research Support
- Consulting Fees
- Speakers Honoraria

Institutions/ Companies

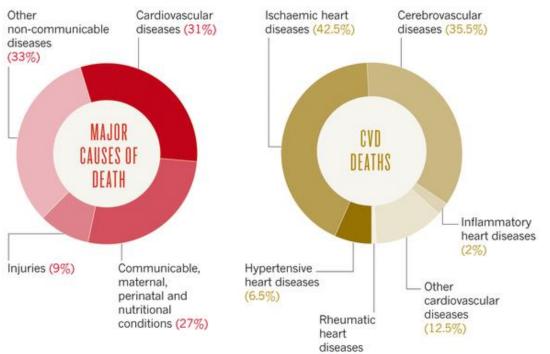
- **7** NMRC
- **BMRC**
- **NUS**
- Astra Zeneca
- **Alere**
- Roche Diagnostics
- オ Abbott
- Thermo Fisher
- Critical Diagnostics
- **7** Novartis

CVD contribution to Global Burden of Disease

Number 1

cause of death globally more people die annually from CVDs than from any other cause.

17.5 million


people die each year from CVDs, an estimated 31% of all deaths worldwide.

80%

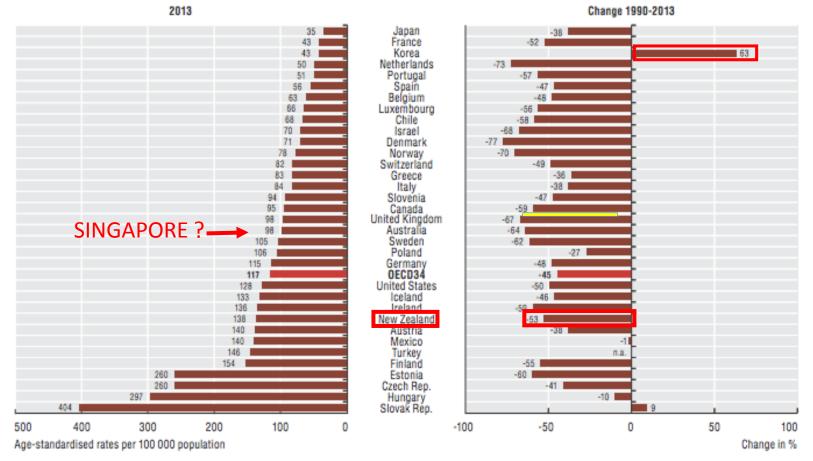
of all CVD deaths are due to heart attacks and strokes

>75%

of CVD deaths occur in low-income and middle-income countries.

Nature 2013

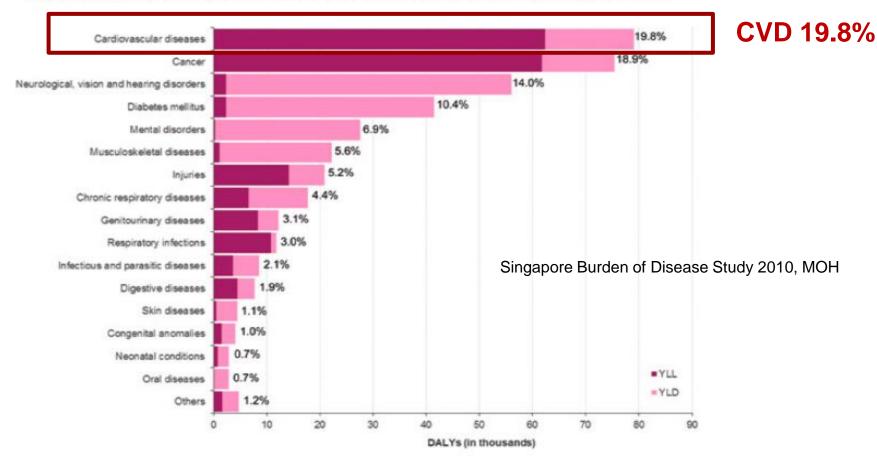
(1%)


Numbers and age-standardised mortality rates from ischaemic heart disease, by sex, 1950–2012

Note: rates per 100,000 population, age-standardised to WHO World Standard Population.

Overall Heart Disease death rates reduced by more than two-thirds since 1968 in the OECD.

IHD Mortality has reduced in most parts of the OECD ... not everywhere



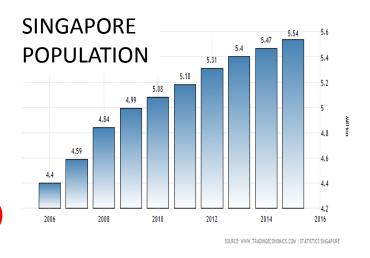
Source: OECD Health Statistics 2015, http://dx.doi.org/10.1787/health-data-en.

StatLink and http://dx.doi.org/10.1787/888933280741

CVD is a Major Local Disease Burden

Figure 4.11: YLL, YLD, and DALYs for each broad cause group, Singapore 2010

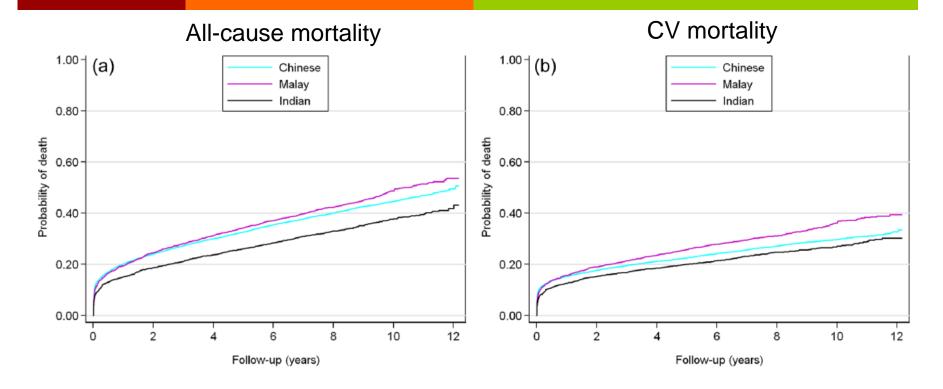
The percentage refers to the proportion of total DALYs contributed by the respective broad cause group.


Singapore

Every day, 16 people die from cardiovascular disease (heart disease and stroke) in Singapore. Cardiovascular disease accounted for 29.6% of all deaths in 2015. This means that nearly 1 out of 3 deaths in Singapore, is due to heart disease or stroke.

PRINCIPAL CAUSES OF DEATHS

	2013	2014	2015
Total No. of Deaths	18,938	19,393	19,862
% of Total Deaths			
Ischaemic Heart Disease	15.5%	16.0%	16.7%
Cerebrovascular Disease (including stroke)	8.9%	8.4%	6.8%
Hypertensive Diseases (including hypertensive heart disease)	3.1%	3.6%	3.9%
Other Heart Diseases	2.0%	1.9%	2.2%
Total % of Deaths from Cardiovascular Disease	29.5%	29.9%	29.6%
Total No. of Deaths from Cardiovascular Disease	5,587	5,799	5,879


Source: Ministry Of Health

Characteristics of Patients with Myocardial Infarction

	Chinese (<i>n</i> =10,100)	Malay (<i>n</i> =3005)	Indian (<i>n</i> =2,046)	p-value
Demographic features				
Age (years)	64 (54–74)	61 (51, 71)	58 (49, 70)	<0.00
Male, %	71.0	73.4	77.0	<0.00
Prior history				
Diabetes, %	34.6	42.0	51.0	<0.00
Hypertension, %	60.5	55.2	54.4	<0.00
Hyperlipidemia, %	49.6	46.3	51.9	0.001
Current smoking, %	52.6	59.6	50.8	<0.00
Renal failure, %	6.4	7.2	4.2	<0.00
Family history of premature coronary	11.1	14.5	21.5	<0.00
heart disease, %				
Prior MI, %	10.5	10.9	14.8	<0.00
Prior PCI, %	4.2	3.6	8.1	<0.00
Prior CABG, %	2.7	1.9	4.7	<0.001
Prior cerebrovascular disease, %	10.5	6.2	7.2	<0.001
Peripheral vascular disease, %	2.6	I.8	2.8	0.037

Carvalho, LP et al Eur Heart J: Acute CVS Care 2014, Vol. 3(4) 354–362

AMI: Ethnic differences in mortality

Over median follow-up of 7.4 years, 6469 of 15150 (43%) died.

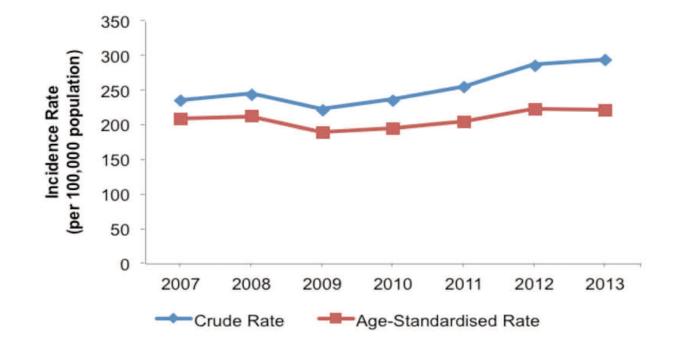
AMI Outcomes: Singapore versus UK-Belgium

Despite younger Age of onset (~60y vs 66 yr))		Singapore 5 Year total no. of cleath, n=4832/15151 (32%)	UK-Belgium 5 year total no. of deaths, n=736/3721 (20%)
5 year post MI Mortality is Higher in	STEMI	1768/6843 (26%)	269/1403 (19%)
Singapore Compared with UK-Belgium	Non-STEMI	3064/8308 (37%)	262/1170 (22%)

European Heart Journal (2010) **31**, 2755–2764 doi:10.1093/eurheartj/ehq326 FASTRACK ESC CLINICAL TRIAL UPDATE

Underestimated and under-recognized: the late consequences of acute coronary syndrome (GRACE UK-Belgian Study)

Keith A.A. Fox^{1*}, Kathryn F. Carruthers¹, Donald R. Dunbar¹, Catriona Graham², Jonathan R. Manning¹, Herbert De Raedt³, Ian Buysschaert⁴, Diether Lambrechts⁵, and Frans Van de Werf⁴ SINGAPORE MYOCARDIAL INFARCTION REGISTRY REPORT NO. 3


TRENDS IN ACUTE MYOCARDIAL INFARCTION IN SINGAPORE 2007 – 2013

NATIONAL REGISTRY OF DISEASES OFFICE

Table 4.1.1	Incidence of AMI Per 100,000 Population (95% CI)
-------------	--

Year	2007	2008	2009	2010	2011	2012	2013
No. of cases	<mark>6817</mark>	7251	6796	7344	8013	9118	9463
CR	234.7	244.0	221.6	235.6	254.2	285.7	293.1
	(229.2-240.3)	(238.4-249.7)	(216.4-226.9)	(230.2-241.0)	(248.6-259.8)	(279.8-291.6)	(287.1-299.0)
ASR	208.9	212.4	189.4	194.5	204.7	223.1	221.2
	(203.9-214.0)	(207.4-217.3)	(184.9-194.0)	(190.0-199.1)	(200.1-209.2)	(218.5-227.8)	(216.7-225.7)

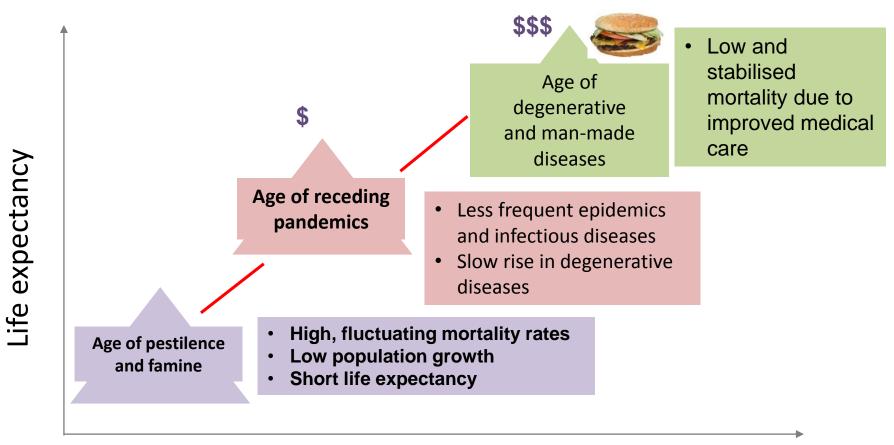

MoH Singapore 2016

Table 4.1.3 Age-Specific Incidence Rate of AMI Per 100,000 Population

Age Group	2007	2008	2009	2010	2011	2012	2013
15-19	0.0	0.0	0.4	0.0	0.0	0.0	0.0
20-24	0.0	1.3	0.0	1.2	1.2	1.5	1.1
25-29	3.9	2.7	4.4	3.3	3.8	4.3	3.9
30-34	8.5	9.0	9.4	8.4	8.7	10.8	12.1
35-39	30.5	31.2	26.5	28.8	31.6	34.1	34.0
40-44	72.9	71.5	71.6	70.4	69.4	74.8	84.8
45-49	149.0	130.5	131.8	141.5	153.1	153.9	155.9
50-54	230.0	240.3	219.2	247.1	223.3	267.4	269.4
55-59	321.4	334.4	316.3	327.3	325.5	362.8	357.3
60-64	476.8	513.1	462.6	424.2	483.4	536.2	485.6
65-69	711.8	715.9	621.3	602.0	691.3	744.8	718.3
70-74	1090.3	1080.0	947.4	978.4	986.0	1078.5	1054.0
75-79	1573.9	1606.1	1472.4	1413.2	1539.6	1606.5	1578.7
80-84	2126.6	2331.4	1844.1	2025.1	2132.7	2301.6	2333.3
85+	3044.4	2992.5	2465.7	2925.2	3000.0	3250.7	3548.7

MoH Singapore 2016

Omran's Epidemiological Transition Theory

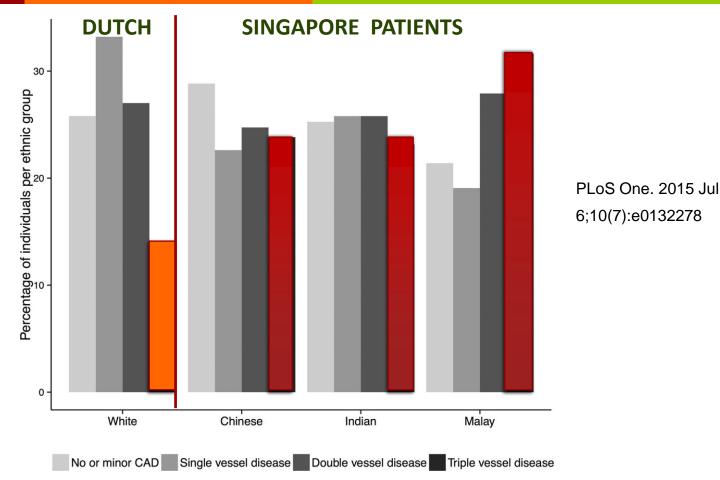
Economic development

RESEARCH ARTICLE

Ethnicity Modifies Associations between Cardiovascular Risk Factors and Disease Severity in Parallel Dutch and Singapore Coronary Cohorts

Crystel M. Gijsberts^{1,2}, Aruni Seneviratna³, Leonardo P. de Carvalho³, Hester M. den Ruijter¹, Puwalani Vidanapthirana⁴, Vitaly Sorokin⁴, Pieter Stella⁵, Pierfrancesco Agostoni⁵, Folkert W. Asselbergs^{5,6,7}, A. Mark Richards^{3,8}, Adrian F. Low³, Chi-Hang Lee³, Huay Cheem Tan³, Imo E. Hoefer¹, Gerard Pasterkamp¹, Dominique P. V. de Kleijn^{1,2,4,8}*, Mark Y. Chan^{3,8}

Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands,
The Netherlands Heart Institute (ICIN), Utrecht, The Netherlands,
Cardiac Department, National
University Heart Centre, National University Hospital, Singapore, Singapore,
Department of Surgery, Yong
Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,
Cardiology
Department, University Medical Center Utrecht, Utrecht, The Netherlands,
Durrer Center for Cardiogenetic
Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands,
Institute of Cardiovascular Science,
faculty of Population Health Sciences, University College London, London, United Kingdom,
Cardiovascular Research Institute (CVRI), National University Heart Centre (NUHCS), National University



Citation: Gijsberts CM, Seneviratna A, de Carvalho

Stable CAD: Singapore versus Dutch

	Caucasian	Chinese	Indian	Malay	p-value
Stable CAD patients					
Ν	150	150	150	150	
Males (%)	83.3	81.3	77.3	78.0	0.52
Age (years, mean ± sd)	63.7±10.5	62.0±8.8	56.8±9.5	57.7±10.0	<0.001
BMI (kg/m², mean ± sd)	28.0±4.4	26.5±4.8	27.4±5.1	29.2±4.9	<0.001
Diabetes (%)	23.5	36.0	58.0	52.7	<0.001
Hypertension (%)	64.0	78.0	69.3	71.3	0.06
Dyslipidemia (%)	57.2	77.3	78.0	75.3	<0.001
Current smoker (%)	24.6	28.8	40.0	47.0	0.013*
Previous PCI (%)	46.7	20.7	30.7	20.1	<0.001
Previous ACS (%)	33.3	17.4	26.8	18.0	0.002
CVA/TIA (%)	8.1	10.0	8.0	8.7	0.92
Peripheral arterial disease (%)	10.7	2.7	3.3	2.0	<0.001
Renal failure (%)	4.7	7.3	6.7	6.7	0.80
Anti platelet (%)	94.0	68.0	54.0	59.3	<0.001
Statin (%)	86.0	73.3	65.3	60.7	<0.001
Beta blocker (%)	74.7	40.0	47.3	52.7	<0.001
RAAS (%)	54.7	42.7	41.3	42.7	0.07

Singapore patients Younger but more Multi-vessel Disease than Dutch

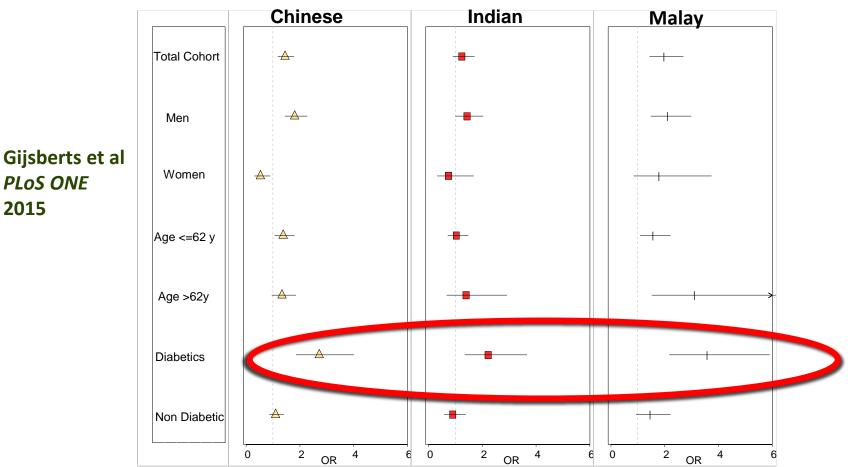


Fig 1. Severity of CAD by ethnicity. Bar chart depicting the distribution of CAD severity as the percentage of the total number of individuals per ethnic group. Triple vessel disease is significantly more common among Chinese, Indians and Malays than among Whites (p <0.001).

doi:10.1371/journal.pone.0132278.g001

Relative Severity of Coronary Artery Disease by Ethnicity

Odds ratios of Chinese, Indian and Malay ethnicity for the severity of CAD relative to Caucasian.

17

IMproving reModeling in **ACute myocardial** infarction Using Live and Asynchronous **Telemedicine** (IMMACULATE)

Principal Investigator: Mark Chan Study Chairman: A. Mark Richards Project Lead: Poh Sock Cheng Telemedicine lead: Karen Koh

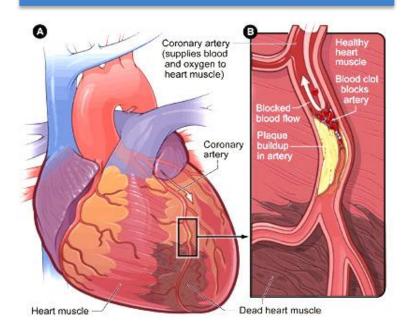
Study Sites

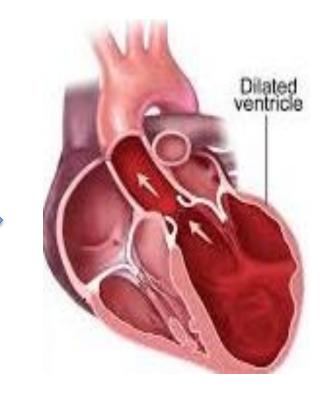
National University Hospital

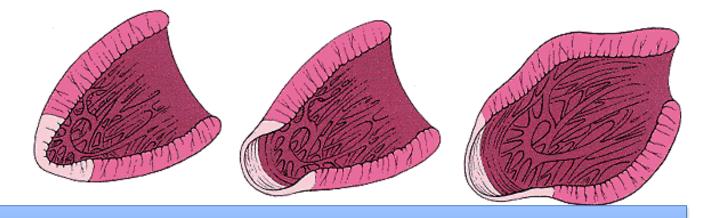
Tan Tock Seng Hospital

Changi General Hospital

Sarawak General Hospital Heart Centre, Malaysia


Christchurch Heart Institute, New Zealand





26/07/2016

Acute Myocardial Infarction

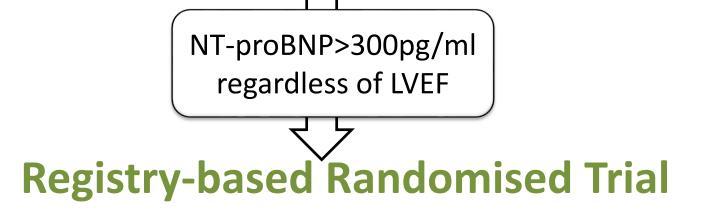
Hours

Days

Months

Aims of IMMACULATE

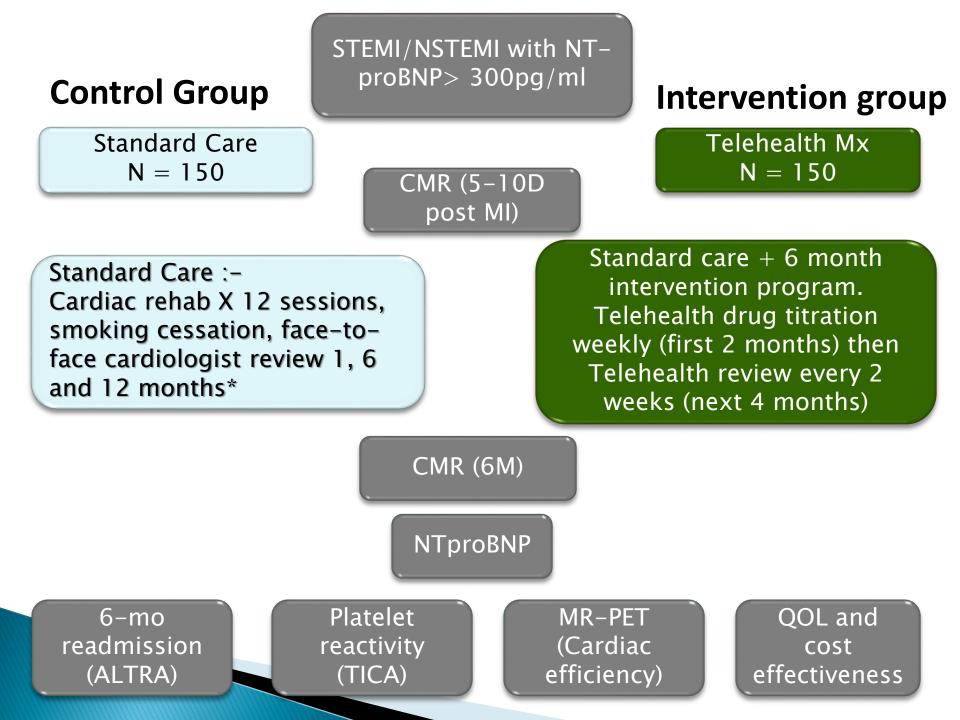
post-MI LV remodeling program:


 1. Multicentre registry of patients hospitalised for acute myocardial infarction (AMI) with:-

-Serial cardiac imaging -Serial blood sampling to identify biomarkers and therapeutic targets for post-MI ventricular remodeling and heart failure.

 2. Registry-based randomised trial comparing ventricular remodeling among patients with AMI and elevated NT-pro-B-type natriuretic peptide receiving comprehensive telemedicineguided post-MI treatment (remote intensive management) vs. standard non-telemedicine guided treatment.

Post-MI Remodeling REGISTRY


1200 STEMI and NSTEMI patient with anterior or large inferior MI undergone <u>pri</u>mary PCI from 5 hospitals

Nurse-led physician supported (NLPS) Remote intensive titration of ACE/ARB and BB

versus

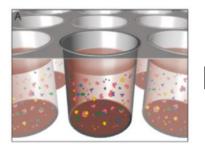
STANDARD CARE

IMMACULATE Registry

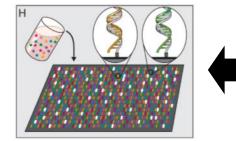
- NUH, TTSH, CGH, Sarawak, Christchurch
- 911 enrolled as of Dec 2016
- 91 dropouts

IMMACULATE RRCT

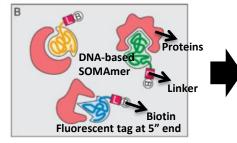
- NUH, TTSH
- 177 consented
- 76 NT-proBNP screen failures
- 101 randomized as of Jan 2017


Post-MI Remodeling Registry

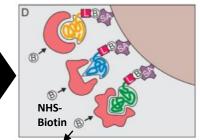
Echocardiography characteristics	Adverse	Reverse
Median Baseline EDV (ml)	92	102
Median Baseline ESV (ml)	40	46
Median Baseline EF %	52	51
Median 6-month EDV (ml)	116	86
Median 6-month ESV (ml)	57	36
Median 6-month EF %	49	56
Endpoints		T STEMI 27.5%
Adverse Remodeling	26.2% <	
Reverse Remodeling	25.5%	NSTEMI 22.6%

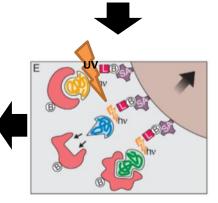

Adverse = increase in left ventricular ESV of 15% over 6 months Reverse = decrease in left ventricular ESV of 15% over 6 months

SomaLogic

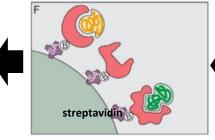

SOMAmer (Slow Off-rate Modified Aptamer) protein-binding reagent consists of **unique short DNA sequence** that incorporates **chemically modified bases** to mimic amino acid side chains and **a 5'- fluorescent tag** for use in the <u>SOMAscan assay</u>.


SOMAmers and samples are mixed in 96-well microwell plates and allowed to bind.


Remaining SOMAmers are quantified by hybridization to microarray containing single-stranded DNA probes complementary to SOMAmer DNA sequence, which form a double-stranded helix. Hybridized SOMAmers are detected by fluorescent tags when the array is scanned.

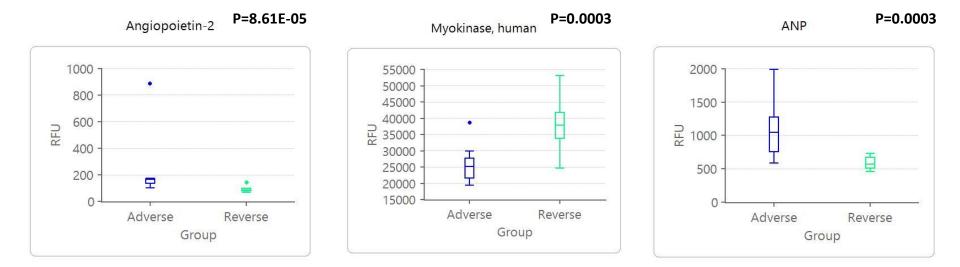

SOMAmer-protein binding: DNAbased SOMAmer molecules bind to specific protein. SOMAmers contain biotin (B), a photocleavable linker (L) and a fluorescent tag at the 5" end.


SOMAmers are captured onto a bead coated with **streptavidin** (SA) which binds biotin.


Proteins are tagged with NHSbiotin.

UV light cleaves the linker and SOMAmer-protein complexes are released from beads. Samples are challenged with anionic competitor (dextran sulfate). Non-cognate complexes (blue SOMAmer) preferentially dissociate.

SOMAmers are released from complexes into solution at high pH

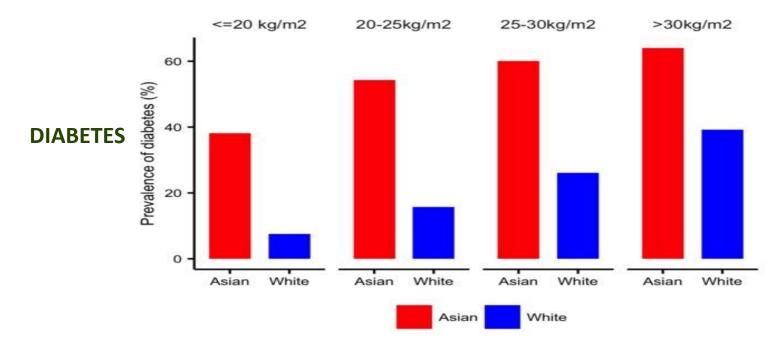


SOMAmer-protein complexes are captured onto **new avidin coated beads** by protein biotin tag.

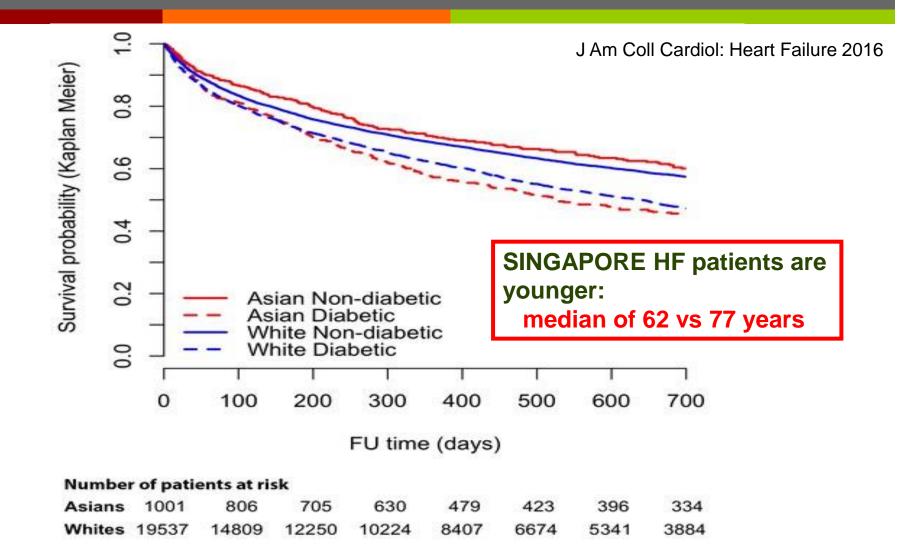
Proteomics of post-MI remodelling

Pilot study (n=24);

- 12 adverse post MI remodelling (% change ESV > 15%)
- 12 reverse post MI remodelling (% change ESV > -15%)
- The SOMAscan[®] 1.3k Assay (SOMAlogic, Boulder, CO) was used for hypothesis-free biomarker discovery 1,310 proteins measured simultaneously in 150 microliters of EDTA plasma (collected 30 days after MI)
- 191 proteins with P<0.05 and 48 proteins with p<0.01 and 5 proteins with P<0.001



Is Singapore facing cardiovascular Catastrophe ?


Comparison of HF in Singapore and Sweden

Methods Two contemporary population-based HF cohorts were compared:

- 1) Singapore n=1,002, 62 [54-70] yr, 76% men, 19.5% obese
- 2) Sweden n=19,537, 77 [68-84] yr, 60% men, 24.8% obese

Heart Failure and Survival in Singapore and Sweden

Is Singapore facing cardiovascular Catastrophe ?

Comparison of HF in Singapore and Sweden

Methods Two contemporary population-based HF cohorts were compared:

- 1) Singapore n=1,002, 62 [54-70] yr, 76% men, 19.5% obese
- 2) Sweden n=19,537, 77 [68-84] yr, 60% men, 24.8% obese

Results

Diabetes was present in 569 (57%) Asians versus 4680 (24%) Whites (p<0.001).

Diabetes was more strongly associated with increased HF hospitalization and all cause mortality in :-Asians (adjusted HR 1.50, 95% CI 1.21-1.87) than Whites (HR 1.29, 95% CI 1.22-1.36) (p=0.045).

Conclusions Diabetes was > TWO-fold more common in Southeast Asian compared to White HF patients, in spite of younger age and less obesity, and more strongly associated with poor outcomes in Asians than Whites.

PEOPLE / SHOP Study NZ and Singapore

Combined Outcome Study

		New Zealar	nd Singa	pore
Popul	ation	4.6m	5.5	m
Densit	y n/km ²	7.8	7,82	9
Land	area	268,000km ²	740kn	n ²
GDP		174,000m	293,0	00m
Unem	ployment	5.6%	3.0%	
l ifo F	xpectancy	80.6yrs	82.1y	rc
		00.0915	02.19	15
Ethnie	CITY			
Waternata Account Countes Manufau Wanado Laces Transit	NZ Euro	67%	Chinese	74%
Capital and Coast MacCentral Hallow Methodation	Māori	15%	Malay	13%
West Coast Carterbary South Carterbary	Asian	10%	Indian 9.2%	
Southern	Pacific	7%		

EUROPEAN SOCIETY OF CARDIOLOGY®

European Journal of Heart Failure (2016) doi:10.1002/ejhf.612

Superior performance of N-terminal pro brain natriuretic peptide for diagnosis of acute decompensated heart failure in an Asian compared with a Western setting

Irwani Ibrahim^{1,2}, Win Sen Kuan^{1,2}, Chris Frampton³, Richard Troughton³, Oi Wah Liew^{4,5}, Jenny Pek Ching Chong^{4,5}, Siew Pang Chan^{4,5}, Li Ling Tan^{4,5}, Wei Qin Lin^{4,5}, Chris J. Pemberton³, Shirley Beng Suat Ooi^{1,2}, and A. Mark Richards^{3,4,5}*

¹Emergency Medicine Department, National University Hospital, National University Health System, Singapore; ²Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ³Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; ⁴Cardiovascular Research Institute, National University Heart Centre Singapore, National University Health System, Singapore; and ⁵Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Received 20 March 2016; revised 1 June 2016; accepted 9 June 2016

Is Singapore facing cardiovascular Catastrophe?

BREATHLESS					
	COUNTRY				
		Singapore			
		n=606	NZ n=500	P-value	
AGE (yr)	Mean	55.1	70.6	<0.001	
	(SD)	15.2	13.0		
BMI (kg/m2)	Mean	27.4	27.3	0.806	
	(SD)	6.9	7.5		
Sa O2 (%)	Mean	97.3	94.4	<0.001	
	(SD)	3	6		
eGFR	Mean	82.4	61.2	<0.001	
(ml/min/1.73 m2)	(SD)	29.3	20.7		

Ibrahim et al Eur J heart Fail 2016

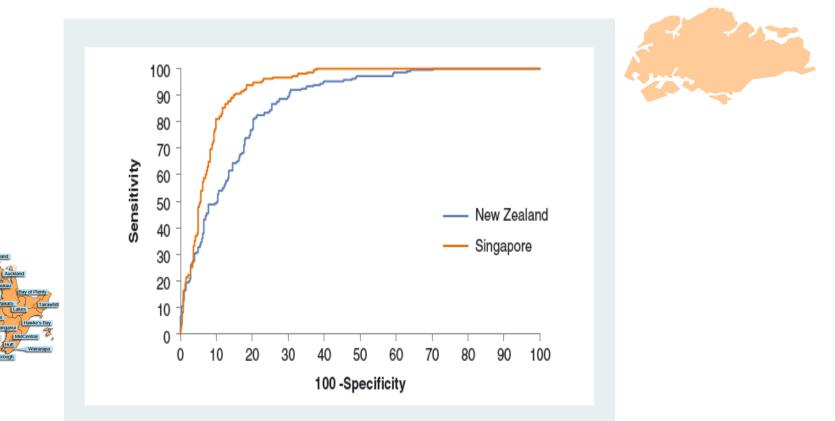
Is Singapore facing cardiovascular Catastrophe ?

Breathless People with a Diagnosis of Acute Heart Failure

		. 501 (000 CD3 . COUI		
		Singapore n=148	NZ n=180	P-value
AGE (years)	Mean	62.0	75.4	P<0.001
	(SD)	11.5	11.4	
BMI (kg/m2)	Mean	28.4	27.5	0.277
	(SD)	7.4	6.8	
Sa O 2 (%0	Mean	96.3	94.1	<0.001
	Std. Deviation	3.8	6.0	
eGFR (ml/min/1.73m	Mean	63.9	53.9	<0.001
2)	Std. Deviation	27.7	18.8	

Acute heart Failure cases In the Emergency Department are not the same in Singapore & **New Zealand**

Ibrahim et al *Eur* J *Heart Fail* 2016


Is Singapore facing cardiovascular Catastrophe ?

Breathless People with a Diagnosis of Acute Heart Failure

		COUNTRY				
	Singapore (N=148)		NZ (N=180)			
	Count	%	Count	%	P-value	
Gender (F)	40	27.0%	64	35.6%	0.099	
COPD	10	6.8%	46	26.0%	<0.001	
CHF	60	40.5%	89	50.6%	0.071	
ТОВАССО	46	31.1%	16	8.9%	<0.001	
PND	74	51.4%	110	63.6%	0.028	
ELEVJVP	54	37.2%	115	67.6%	<0.001	
DIABETES	80	54.1%	43	24.2%	<0.001	
HYPERLIPIDEMIA	85	57.4%	79	46.2%	0.045	
DYSPREST	95	65.5%	138	77.1%	0.021	
ECGAFIB	33	22.3%	64	44.1%	<0.001	
ECGLBBB	7	4.7%	18	13.3%	0.011	

Acute heart Failure cases In the Emergency Department are not the same in Singapore & New Zealand

> Ibrahim et al *Eur* J *Heart Fail* 2016

Figure 1 Receiver operating characteristic curves for discrimination of acute decompensated heart failure. Areas under the curve for Singapore (0.926) and New Zealand (0.866) differ significantly (P = 0.012).

Ibrahim et al *Eur* J *Heart Fail* 2016 Diagnostic Test Performance of NT-proBNP for Diagnosis of Acute Heart Failure

Single threshold (300pg/ml)

Singapore					
	NTF				
	<=				
Diagnosis	300.00	300.01+	Total		
No	334	124	458		
Yes	5	143	148		
Total	339	267	606		
	Estimate	LL	UL		
Sensitivity	96.62	92.29	98.89		
Specificity	72.93	68.61	76.94		
PPV	53.56	47.38	59.66		
NPV	98.53	96.59	99.52		
Accuracy	78.71%				

Christchurch				
	NTPBNP			
	<=			
Diagnosis	300.00	300.01+	Total	
No	135	185	320	
Yes	5	175	180	
Total	140	360	500	
	Estimate	LL	UL	
Sensitivity	97.22	93.64	99.09	
Specificity	42.19	36.71	47.81	
PPV	48.61	43.34	53.91	
NPV	96.43	91.86	98.83	
Accuracy	62.00%			

Age adjusted thresholds <50 years >450pg/ml 50-75 yr >900pg/ml >75 years >1800pg/ml

Singapore							
	NTF						
Diagnosis	Below	Above	Total				
No	393	65	458				
Yes	17	131	148				
Total	410	196	606				
	Estimate	LL	UL				
Sensitivity	88.51	82.25	93.16				
Specificity	85.81	82.27	88.87				
PPV	66.84	59.77	73.38				
NPV	95.85	93.44	97.57				
Accuracy	86.47%						

Cinganoro

Christchurch					
	NTPBNP				
Diagnosis	Below	Above	Total		
No	228	92	320		
Yes	21	159	180		
Total	249	251	500		
	Estimate	LL	UL		
Sensitivity	88.33	82.72	92.63		
Specificity	71.25	65.95	76.15		
PPV	63.35	57.06	69.32		
NPV	91.57	87.40	94.70		
Accuracy	77.40%				

Ibrahim et al Eur J heart fail 2016

1. Many Co-Investigators and Co- Authors from:-Singapore, Netherlands, Sweden, New Zealand.

2. Mark Chan, Carolyn Lam, Dominique de Kleijn.

- 3. NMRC Singapore.
- 4. NUS, NUHS.

4. New Zealand HRC and Heart Foundation.

CONCLUSIONS

- Myocardial Infarction occurs early in Singapore.
- Outcomes may be worse than in the West.
- Incidence in younger (30-60 years) age groups appears to be rising.
- Risk factors including Diabetes and Hypertension are highly prevalent within the AMI population. Disease for given burden of risk is worse than in the west.
- Heart Failure ...a key consequent morbidity after AMI occurs early and is characterized by high prevalence of diabetes and worse outcomes.
- Research in to the burden of risk leading to AMI and the biology and medical management post-AMI warrant research and development of effective interventional strategies.

Thank you for your attention

13 33